
Resonant Ultrasound Spectroscopy
With a means of measuring a sample’s natural resonance frequencies and a desktop computer, one
can use resonant ultrasound spectroscopy to determine the elastic constants of a broad range of
crystalline and noncrystalline materials.

Julian Maynard

When a new crystalline material is discovered, one of
the first fundamental properties to be determined is the
atomic structure, defined by the minimum in the free en-
ergy with respect to the positions of the atoms. Another
fundamental characteristic of interest is the curvature of
the free energy in the vicinity of the minimum, and this
would be manifest in the elastic constants for the mate-
rial. As derivatives of the free energy, elastic constants
are closely connected to thermodynamic properties of
the material. They can be related to the specific heat,
the Debye temperature, and the Gruneisen parameter
(which relates the thermal expansion coefficient to the
specific heat at constant volume), and they can be used
to check theoretical models. Extensive quantitative con-
nections among thermodynamic properties can be made
if the elastic constants are known as functions of tem-
perature and pressure. The damping of elastic waves
provides information on anharmonicity and on coupling
with electrons and other relaxation mechanisms. The
elastic properties are perhaps most valuable as probes
of phase transitions, such as superconductivity transi-
tions. Clearly precise and accurate measurements of
elastic constants furnish significant information about
materials.

Elastic constants, like spring constants, can be de-
termined by means of a static technique that measures a
linear response to a small applied force. However, it was
learned long ago that a better method is to measure an
elastic vibration, as found, for example, in a propagating
sound wave. Most existing complete sets of elastic con-
stants for materials have been determined by measuring
the time of flight of sound pulses.

More recent determinations of elastic constants have
used a technique called resonant ultrasound spectroscopy
(RUS), in which one measures the natural frequencies
of elastic vibration for a number of a sample’s normal
modes, and processes these, along with the shape and
mass of the sample, in a computer. With a proper config-
uration, a single measurement yields enough frequencies
to determine all of the elastic constants for the mate-
rial (as many as 21 for a crystal with low symmetry).
Samples may be prepared in rectangular, spherical and
a wide variety of shapes, and crystalline samples need
not be oriented with respect to their crystallographic
axes. Samples may be as small as a few hundred mi-
crons, with masses less than 100 micrograms, or they
may have dimensions of several centimeters, and masses
of several kilograms. (see figure 1.) several centime-
ters in diameter. The largest sample yet tested with an

acoustic resonance method was a bridge spanning the
Rio Grande river. RUS shifts the emphasis from exper-
imental technique to digital data analysis. In the data
analysis, one must first solve the problem of calculating
the natural frequencies in terms of elastic constants and
sample shape and mass (this is known as the “forward
problem”), and then apply a nonlinear inversion algo-
rithm to find the elastic constants from the measured
natural frequencies (the “inverse problem”). While the
methods used in RUS are not new, it is only with the re-
cent increasing availability of powerful microcomputers
that RUS has experienced a rapid growth in popularity.

History of RUS
Interest in elastic properties dates back to studies of the
static equilibrium of bending beams by Galileo and other
17th century philosophers. With the basic physics intro-
duced by Hooke in 1660, the development of the theory
of elasticity followed the development of the necessary
mathematics, with contributions from Leonhard Euler,
Joseph Lagrange, Simeon-Denis Poisson, George Green,
and others. The resulting theory was summarized in the
treatise by Augustus Love in 1927 [1].

The theory of elasticity indicated that the elastic
constants of a material could be obtained by measur-
ing sound velocities in that material. This led to the
conventional time-of-flight measurements with ultrasonic
pulses. Natural frequency measurements were used at
least by 1935 [2], but the early methods could find only
approximate solutions to the forward and inverse prob-
lems.

Around 1880 Gabriel Lame and Horace Lamb found
analytic solutions to the forward problem for some spe-
cial shapes (cubes and spheres) for isotropic, noncrys-
talline, materials. In 1964 D. B. Frasier and R. C. LeCraw
used the solution for a sphere of isotropic material, in-
verted graphically, in what may be the first RUS mea-
surement. [3] The problem of crystalline materials was
considerably more difficult. Although some perturbative
methods were developed for crystalline materials, it was
not until after 1956 that the power of digital computers
made the more general forward problem soluble [4, 5].

Much of the impetus for solving the inverse problem
came from the geophysics community, where solutions
were needed to use seismic data (particularly Earth’s free
oscillation modes) to determine Earth’s interior struc-
ture, and to measure accurately the elastic moduli of
materials believed to be Earth’s constituents. The stud-
ies of elastic moduli led to further use and development
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a b
RUS measurements can be
taken for a variety of sam-
ples and with a variety of ap-
paratus. a: A device us-
ing thin piezoelectric films has
been used to measure sam-
ples with masses down to 70
micrograms. In this photo,
the space between divisions
on the scale is 1 millimeter.
(Fron ref. 17.) b: RUS
has also been used to detect
defects in ball bearings sev-
eral centimeters in diameter.
(Courtesy of Quatro Corpora-
tion, Albuquerque, New Mex-
ico.)
Figure 1

of RUS, in particular by geophycists Orson Anderson,
Naohiro Soga, and Edward Schreiber, who collaborated
at Columbia University to improve the method of Frasier
and LeCraw and introduced the term Resonant Sphere
Technique (RST). Anderson and Schreiber generated ex-
citement when they used RST to measure spherical lu-
nar samples in 1970. In their paper they quoted Eras-
mus: “With this pleasant merry toy, he... made his
friends believe the moon to be made of green cheese”,
and they compared the low sound speed in lunar rock
to sound speeds in various cheeses. Although the veloc-
ities were comparable, the cheeses were of much lower
mass density. However, Anderson noted that the differ-
ence “...may readily be accounted for when one considers
how much better aged the lunar materials are” [6].

Encouraged by the excitement the lunar measure-
ments generated, Anderson gave his Columbia Univer-
sity student Harold Demarest the problem of extending
the method for use with a cubic sample, and Demarest
found that the problem could be solved numerically for a
rectangular parallelepiped of an anisotropic, crystalline
material as well as for spheres of isotropic materials. De-
marest’s method, verified with experiments, was pub-
lished in 1971 [5] and was later referred to as the Rect-
angular Parallelepiped Resonance (RPR) method.

A postdoc at Columbia University, Mineo Kumazawa,
learned Demarest’s method, and upon joining the faculty
at Nagoya University, pursued the technique with grad-
uate student Ichiro Ohno. In 1976 Ohno published a
paper [7] with some significant extensions to Demarest’s
work. Together the papers of Ohno and Demarest cover
nearly all of the important aspects of RUS. Researchers

in geophysics have used RST and RPR extensively since
1976.

In 1988 Albert Migliori and I were collaborating on
an attempt to measure sound velocities in very small
crystals of high-Tc superconductor material then avail-
able, using small piezoelectric film transducers [8]. When
the problem of what to do with measured resonant fre-
quencies had to be faced, Migliori tracked down the ref-
erences describing RPR in the geophysics literature (con-
firming his wry observation that, “six months in the lab
can save you a day in the library”), and the RPR tech-
nique was then introduced into the general physics com-
munity. Migliori immediately extended the limits of the
technique with regard to loading (the shifts in a sample’s
natural frequency resulting from attaching transducers)
and low-level electronic measurement, and with William
Visscher, brought the computer algorithms to their cur-
rent state. I applied the technique to even smaller sam-
ples (70 micrograms is the current record) using piezo-
electric films. Promoting the technique in the physics
community, Migliori introduced the term resonant ultra-
sound spectroscopy to encompass all techniques in which
acoustic resonant frequencies are used to determine elas-
tic moduli. For the current state of RUS theory and
apparatus, see references 9-11.

Finding elastic constants
If a spring under an initial tension is subjected to an
additional stress σ, two points at positions x and x + dx
will be displaced by ψ (x) and ψ (x + dx) , respectively.
The strain ε is then equal to dψ/dx, and Hooke’s law is
σ = cε where c is a one-dimensional elastic constant.
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Computer generated illustrations of some normal modes
of vibration for a rectangular parallelepiped sample of a
anisotropic crystalline material. The modes involve displace-
ments with non-trivial dependence on all of the elastic con-
stants, and a powerful computer is required to sort out the re-
lationships. Animated illustrations are available at the World
Wide Web site ftp://ftp.phys.psu.edu/pub/maynard on the
World Wide Web.
Figure 2

For a three-dimensional elastic solid, the displacement
becomes a three-dimensional vector ψi. The strain is
defined as εij = ∂ψi/∂xj + ∂ψj/∂xi. Hooke’s law be-
comes

σij=

3∑

k=1

3∑

l=1

cijklεkl (1)

and Newton’s second law for a small volume element
with mass density ρ is

3∑

j=1

∂σij

∂xj
= ρ

∂2ψi

∂t2
(2)

The symmetry of the definitions and the assumption that
the elastic energy must be quadratic in the strain reduce
the number of independent elements of cijkl from 81 to
21. Additional symmetries of a particular crystal group
further reduce the number of independent constants. For
example, cubic crystals have three independent elastic
constants, while orthorhombic crystals have nine.

To determine the modes of vibration one solves equa-
tions 1 and 2 assuming stress free boundary conditions
at the surface of the sample:

3∑

j=1

σijnj = 0 (3)

where the nj are the components of the unit vector nor-
mal to the surface. Because of the tensor nature of
the equations, the relation between particle displacement
and the direction of wave propagation is quite compli-
cated. One uses a computer first to solve numerically the
forward problem for the natural frequencies in terms of
the elastic constants for a solid with a given shape and
stress-free boundary conditions, and then to invert the
resulting complicated equations. Assuming a time de-
pendence proportional to cos (2πft) solutions to equa-
tions 1-3 exist only for those values of f that are the

natural frequencies. Examples of computer generated
normal modes of vibration found by solving the forward
problem for a typical anisotropic sample are illustrated
in figure 2.

The boundary value problem described by equations
1-3 can be replaced by a single variational problem. It
is interesting to note that the variational problem yields
not only the differential equation for ψi, but also the
stress-free boundary conditions. To quote Visscher, get-
ting both equations from the basic Lagrangian is “...a
mathematical fortuity that may have occurred during a
lapse in Murphy’s vigilance.”

One can find approximate solutions to the varia-
tional problem using the Rayleigh-Ritz method, in which
one approximates ψi as a linear combination of N basis
functions Φp :

ψi =
N∑

p=1

apiΦp (4)

Minimizing the resulting Lagrangian with respect to the
coefficients api, one obtains 3N × 3N matrix eigenvalue
problem that can be solved with a computer algorithm,
yielding the resonant frequencies of the system and the
expansion coefficients from equation 4. The expansion
coefficients can be substituted into equation 4 to con-
struct normal modes like those shown in figure 2.

The basis functions should be selected to give well-
conditioned matrices and to permit analytic evaluation
of the integrals involved. Early work on uniform rect-
angular parallelepipeds used Legendre polynomials. Be-
cause these were orthogonal, the matrix problem was
considerably simplified and could be solved with a faster
computer algorithm. However, Visscher pointed out that
using basis functions of the simple form xlymzn allowed
analytic evaluation of the integrals involved for a large
number of shapes, including prisms, spheroids, ellipsoids,
shells, bells, eggs, potatoes, sandwiches, and others. The
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Simple RUS apparatus holds a rect-
angular parallelepiped sample lightly
at its corners between two 9-µm-thick
piezoelectric-film (PVDF) transducers.
One transducer excites the vibration of
the sample; the other monitors the sample
response and detects resonance frequen-
cies. Samples may be as small as a few
hundred microns. (Adapted from ref. 10.)
Figure 3

great versatility of this basis set more than compensates
for the slight increase in time required to compute the
solution.

To obtain a good approximation to the correct so-
lutions and resonant frequencies, it may be necessary
to use as many as 400 basis functions. However, for
most crystal types it is not necessary to solve the eigen-
value problem for a full 1200×1200 matrix; because of
the symmetry of the elastic tensor, a proper arrangement
of basis functions will put the matrix into block diago-
nal form. The eigenvalue problem for each block can be
solved independently with significant savings in compu-
tation time. For example, for orthorhombic or higher
symmetry, the matrices may be reduced to eight blocks,
resulting in a nearly eightfold reduction in computation
time. The details of the manipulation of the basis func-
tions are in the papers by Ohno. [7]

For RUS, one must invert the forward problem to ob-
tain the elastic constants cijkl in terms of the resonance
frequencies fn. In most cases there will be more mea-
sured frequencies than independent elastic constants, so
one seeks the set of independent elastic constants that
best fits the measured frequencies, usually in a least
squares sense [9]. In both the forward and inverse prob-
lem, it is advisable to manipulate the matrices with sin-
gular value decomposition [9] because this technique al-
lows one to monitor the conditioning of the matrices.
In the inverse problem, the appearance of small singu-
lar values in such a decomposition indicates elastic con-
stants that were not well determined from the measured
frequencies, perhaps because the sample had a patholog-
ical shape. One can define linear combinations of elastic
constants which are best determined by the measured
frequencies.

To solve the inverse problem, one may start with a
“guessed” set of elastic constants in the forward prob-
lem and then use an iteration procedure to find the set
of constants that best fits the measured frequencies. Pro-
vided that the “guessed” elastic constants used to start

the iteration procedure are close to the actual values and
that the forward problem normal modes are correctly as-
signed to the measured resonance frequencies, the inver-
sion should typically converge to the elastic constants
after a fraction of an hour of desktop computer time.
These points are discussed below in the description of
the measurement methods.

Because a typical RUS measurement will usually pro-
vide many more frequencies than the number of indepen-
dent elastic constants, the measured frequencies can also
be used to give a best fit to other parameters, such as
the sample’s shape and dimensions (although one known
length is necessary) and the orientation of its crystallo-
graphic axes relative to its faces. In any case, one need
not orient the crystallographic axes with respect to the
sample faces, although this does greatly simplify com-
putations. For RST, the orientation of crystallographic
axes is irrelevant for determining the elastic constants.

Measurement methods for RUS
A general RUS measurement [9, 10] determines the nat-
ural frequencies of a sample with stress-free boundary
conditions by measuring the resonance frequencies of the
sample when held lightly, with no bonding agents, at two
positions on the sample surface between two transduc-
ers. One transducer drives vibrations in the sample at
a tunable frequency; the second measures the amplitude
(and possibly the phase) of the sample’s response; as the
frequency of the drive is swept, a sequence of resonance
peaks is recorded. The positions of the peaks occur at
the natural frequencies fn (from which the elastic con-
stants are determined) and the quality factor (Q, given
by fn divided by the full width of a peak at its half-
power points) for each resonance provides information
about the dissipation of elastic energy.

In order for the resonance frequencies to equal the
natural frequencies with sufficient accuracy, one must
minimize the loading of the sample by the transducers.
Samples can he measured with loadings only slightly
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Sophisticated RUS apparatus supporting a sample
at its corners. The operation is similar to that of the ap-
paratus in Fig. 3, but the transducers are piezoelectric
disks backed by diamond cylinders. With this appara-
tus, the orientation of the sample between the transduc-
ers canbe varied, allowing better determination of the
mode to which a measured frequency belongs. (Photo-
graph courtesy of Albert Migliori, Los Alamos National
Laboratory.) Figure 4

greater than their weight, resulting in a measurement ac-
curacy on the order of a tenth of a percent. This is gen-
erally no worse than the accuracy to which the sample
size and shape are known. Independent of the accuracy,
the precision of the measurement is usually on the order
of a few parts per million, and this helps when inves-
tigating small changes as a function of temperature or
pressure and when probing phase transitions and related
phenomena.

It is worth noting that in a conventional ultrasonic
pulse measurement, great pains are taken to maximize
the coupling between the transducer and the sample, so
that the resonating transducer can deliver the largest
possible amplitude to the non-resonating sample [11]. In
a method that resonates the sample, strong coupling is
not necessary, because at resonance, the sample acts as
a natural amplifier with a gain equal to the Q (typi-
cally 1000 to 10,000), and readily measured sample am-
plitudes are generated. An additional advantage of res-
onating the sample is that when measurements change
as a function of temperature, pressure and other vari-
ables, one can be confident of measuring changes due
to the sample, rather than to the transducer or trans-
ducer bonding agent. Yet another benefit of a resonance

method is that it uses continuous wave excitation, allow-
ing one to employ phase-sensitive detection methods to
extract signals from noise. This feature, along with the
large gain at the sample resonance permits RUS mea-
surements in the presence of thermal noise at high tem-
peratures [12].

A simple apparatus for making RUS measurements
is shown in figure 3. [11] In the illustration a rectan-
gular parallelepiped sample is supported by transducers
at diametrically opposite corners. Corners are used for
contact because they provide elastically weak coupling to
the transducers, greatly reducing loading, and because
they are always elastically active (that is, they are never
nodes) and thus couple to all of the normal modes of
vibration. The two transducers in this apparatus consist
of strips of 9-µm thick polyvinylidene fluoride (PVDF)
piezoelectric film [11], cut into strips about 500 µm wide.
The strips are partially metallized on each side, so that
conducting portions overlap in the central part of the
strip, forming a capacitor sandwiching the piezoelectric
film. Electrical contact is made by means of the metal
film on the strip to metal spring mounts, which maintain
a small tension in the strips. One adjustable transducer
block is brought toward the other until the sample is just
supported by its corners at the centers of the strips; no
bonding or ultrasonic coupling agent is required. As in
the general RUS measurement, one transducer drives the
sample, and the other monitors the sample resonances.
Because the thin piezoelectric film has a low Q, its reso-
nances do not interfere with the sample resonances. This
simple RUS apparatus can be used for samples as small
as a few hundred microns.

A more sophisticated RUS apparatus is illustrated in
figure 4. As in the apparatus just discussed, the trans-
ducers contact a rectangular parallelepiped sample at its
corners. Constant loading is maintained (even if tem-
perature is varied) with a balanced, pivoted lever like
the tone arm of a phonograph. The transducers in this
case are conventional piezoelectric disks bonded to dia-
mond cylinders to increase the resonance frequencies of
the transducers so that they do not interfere with those
of the sample. In this apparatus, the lower transducer
may be moved laterally while measurements are being
taken, yielding additional information that can be used
to identify the normal modes.

As mentioned in the theory section, an important
consideration for the convergence of the RUS data anal-
ysis procedure is that the normal modes excited in the
measurement be correctly identified, in order that the
measured frequencies can be matched with the corre-
sponding frequencies determined in the forward problem.
A number of clever techniques for identifying the modes
are discussed in the RUS literature [5, 7, 10, 11]. These
include (1) using good values for the initial elastic con-
stants (possibly theoretically predicted or obtained from
incomplete pulse measurements), and assigning each ex-
perimental frequency to the closest calculated frequency;
(2) varying the size of the sample, and using the rates of
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a b

High-temperature RUS measurements can be made using a modified apparatus
which holds the sample between two alumina buffer rods in a furnace. a: The
piezoelectric disks are attached to the buffer rods outside the furnace and couple
to the sample through the rods. Measurements can be made at temperatures
up to 1825 kelvin. b: Because the resonances of the rods are dense and highly
damped, they form a continuous background against which the sample reso-
nances stand out as sharp peaks. This permits high-precision determinations
of elastic constants even at high temperatures. The peaks are labeled using the
classification scheme from ref. 7. (Adapted from ref. 13.) Figure 5

change of the frequencies for identification; (3) switching
assignments for frequencies most likely to cross during
the iterations, and searching for the best fit; [11] and
(4) varying the orientation of the sample relative to the
transducers and monitoring changes in the signal am-
plitude [10], as mentioned with the description of the
second apparatus above. For different normal modes,
the sample corner vibrates in different directions; hence
changing the sample’s orientation relative to the trans-
ducer varies the transducer signal amplitude in different
patterns. These patterns can be used to identify the
normal mode.

An important application of RUS is the determi-
nation of elastic constants for a material at tempera-
tures significantly higher than its Debye temperature.
At such high temperatures, however, the performance
of ultrasonic transducers is severely degraded and bond-
ing agents for conventional pulse measurements fare even
worse. In 1988 Orson Anderson [12] solved this problem
with a variation of the RUS method, illustrated in figure
5a. In this variation the sample was supported between
the ends of long thin alumina buffer rods which extended
outside a high temperature oven, allowing the transduc-
ers to be mounted at the outer ends of the rods at a
safe temperature. One might suspect that the long rods
would have many resonances which would obscure the
resonances of the sample, but it turns out that the reso-
nances of the rods are so dense and highly damped that
they overlap into a smooth background. The resonances

of the sample, with high Q’s even at high temperatures,
are easily observed above the background. An example
of data from this RUS apparatus is shown in figure 5b.

Ricardo Schwarz introduced another noteworthy vari-
ation of RUS [13]. In this case a sample of magnetostric-
tive material or a nonmagnetic sample coated with a
magnetostrictive film is excited with an alternating mag-
netic field from a drive coil. A second coil measures the
effective permeability of the sample, detecting elastic-
resonance shifts in the inductive coupling. The tech-
nique is interesting in that no contact with the sample
is required.

Further details of RUS apparatus and measurement
are available in the literature [10–13]. RUS apparatus
may vary considerably in sophistication. One can avoid
fabrication and development altogether by purchasing a
commercial unit, like that shown in figure 1b. A com-
plete unit includes the components for holding the sam-
ple, automated data acquisition, and computer process-
ing. By simply placing a sample in the holder, one can
determine all of the elastic constants in a fraction of an
hour.

RUS applications
RUS has been most extensively applied in geophysics,
where the measurement of the thermodynamic proper-
ties and anharmonic effects of materials at temperatures
exceeding twice the Debye temperature is a high priority.
Such elastic data can be used to check theoretical mod-
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els and their extension to high temperature and pressure,
where some asymptotic behavior may be convenient for
other geophysical calculations and extrapolations. An-
harmonic effects are evident in the Gruneisen relation
and in the departure of heat capacity from the Law of
Dulong and Petit. Many geophysicists have used RUS,
most notably Anderson and the Japanese.

Measurements of elastic constants have proved to be
excellent probes of phase transitions. At a second or-
der phase transition, while many thermodynamic quan-
tities show no obvious evidence of the transition, the
elastic constants may show discontinuities. One may use
the discontinuity to learn about the physics driving the
phase transition. A particularly noteworthy application
has been for high temperature superconducting phase
transitions, since elastic constants are sensitive probes
of the environment in which the electrons pair. Super-
conducting transitions are often accompanied by struc-
tural phase transitions, and elastic constants can pro-
vide information about the thermodynamics of the phase
transitions. Even if the structural transition is arrested
by the superconducting transition, the elastic constants
may still indicate structural instability. Migliori and col-
laborators have used RUS to study phase transitions,
including those for high temperature superconductors,
with great success [14]. A good deal of physics may be
studied by means of high-precision (a few parts per mil-
lion) measurements of frequencies and/or quality factors
as functions of variables such as temperature, pressure,
isotopic content, without having to determine absolute
values of the elastic constants. The quality factors for
different modes, governed for the most part by different
lattice motions, can shed light on various aspects of the
physics involved. Some complex systems may involve dif-
fusive motion of constituents on a time scale close to that
of the period of the ultrasound wave, and such dynamics
may be studied as relaxation effects. Robert Leisure has
demonstrated the utility of RUS in this area [15].

The high accuracy and precision of RUS are evi-
dent in studies of quasicrystals. [16] Unlike conventional
crystals, quasicrystals are elastically isotropic. While
many physical properties of highly symmetric conven-
tional crystals (for example, cubic crystals) are very nearly
isotropic, the property of linear elasticity is fundamen-
tally anisotropic; that is, the velocity of sound may be
different in different directions. Thus it is interesting
that icosahedral quasicrystals, while having long-range
order like conventional crystals, must be isotropic in
sound propagation. Experimentally measuring elastic
anisotropy has proved challenging because while conven-
tional crystals are fundamentally anisotropic, their elas-
tic constants may be numerically very close to isotropic
values, making it difficult to distinguish between intrin-
sically isotropic and anisotropic behavior in a measure-
ment. RUS has been used to obtain high precision mea-
surements of the elastic constant of both quasicrystalline
and closely related periodic phases. These measurements
have shown the quasicrystal to be isotropic with an un-

precedented level of confidence of ten standard devia-
tions.

Because of the ease of use of RUS and the widespread
availability of powerful microcomputers, it is anticipated
that the measurement of elastic constants will become
readily accessible for many more research applications.
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