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Unlike conventional crystals, quasicrystals are predicted to be elastically isotropic.

To confirm

this prediction experimentally, one must distinguish the quasicrystal from nearly isotropic crystals,
which requires a high degree of precision. We report the use of resonant ultrasound spectroscopy to
determine that the AICuLi quasicrystal is isotropic within 0.07%, significantly more isotropic than any
conventional crystal (by 10 standard deviations). By contrast, we find that a closely related cubic phase

of AlCulLi is slightly, but measurably, anisotropic.

PACS numbers: 61.44.+p, 62.20.—x

One of the fascinating properties of quasicrystals [1],
or materials which give fivefold diffraction patterns, is
that, unlike conventional crystals, such materials are elas-
tically isotropic [2]. For conventional crystals with high
symmetries (e.g., cubic crystals), many physical prop-
erties are isotropic, but the property of linear elasticity
is fundamentally anisotropic [3]; that is, the velocity of
sound may be different in different directions. Thus it
is interesting that materials with diffraction spots in five-
fold patterns, having long-range order like conventional
crystals, must be isotropic in sound propagation. Qua-
sicrystals are further interesting in that by attaining an
appropriate amount of a unique strain (phason strain) [2],
they may be transformed into conventional crystals (re-
ferred to as “periodic approximants”) [4], thereby becom-
ing elastically anisotropic. Measuring these properties
experimentally has been challenging [5—8], because while
conventional crystals are fundamentally anisotropic, their
elastic constants may be numerically very close to those
of an isotropic material, so that it is difficult to distinguish
between intrinsically isotropic and anisotropic behavior in
a measurement. Indeed, nearly isotropic behavior might
be expected in the periodic approximants, because they
are structurally very similar to the isotropic quasicrys-
tals [9]. In this Letter we report the use of resonant
ultrasound spectroscopy [10,11] to obtain high precision
measurements of the elastic constants of both the qua-
sicrystalline and a periodic approximant phase of AlCuLi,
and find, with a significant level of confidence, that the
quasicrystalline phase is isotropic (differing from the most
nearly isotropic conventional crystal by 10 standard devi-
ations), while the periodic approximant is not.

Before presenting the details of our measurement, it
is worthwhile to quantify the difficulty of determining
whether or not a material is elastically isotropic. For this
purpose, we consider cubic tungsten, which has the small-
est anisotropy for a conventional crystal to be found in the
literature [12,13]. The sound velocity in tungsten varies
with direction by 0.0% to 0.5%, depending on the orienta-
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tions used in a particular experiment. To show that a qua-
sicrystal is isotropic and, hence, unlike classical crystals,
a conventional sound velocity measurement would have
to probe all principal directions (which would require re-
mounting transducers, resulting in a loss of accuracy),
then calculate the isotropy (which magnifies the inaccu-
racies), and finally show that the isotropy is significantly
smaller than that for tungsten. This is especially chal-
lenging considering the small size of many high-quality
samples. Previous studies of quasicrystals [5—8] have
found no evidence for elastic anisotropy in sound propa-
gation, but only at a resolution of approximately 1%; con-
sidering the properties of tungsten and the possibilities
for periodic approximants, it is apparent that more precise
measurements are necessary. As will be discussed below,
resonant ultrasound spectroscopy probes all principal di-
rections in one measurement, while achieving precision
sufficient both to show that the AICuLi quasicrystal is at
least an order of magnitude more isotropic than tungsten
and to quantify the anisotropy of a periodic approximant.
First, we shall discuss the notion of elastic anisotropy in
terms of the elements of the elastic tensor.

The elastic tensor ¢;; for an isotropic solid has only
two independent elements, related to a shear and a
bulk modulus. By contrast, the simplest elastic tensor
for a conventional crystal (cubic) has three independent
constants, cjj, ci2, and c44, using conventional notation
[3]. However, the form for the isotropic and cubic tensors
are identical, except that for an isotropic solid, 2c44 =

ci1 — ci2 [3]. It is therefore convenient to define an
anisotropy parameter € as
2C4
e=1-—— (1
Ci1 — C12

so that € is zero for an isotropic solid. For tungsten, € is
only 0.007 = 0.002 [12,13].

Verifying small values of € not only requires a precise
measurement of the elastic constants, but also requires
single crystal (or quasicrystal) samples, since multiple
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crystallites could give rise to systematic errors, resulting
in a spurious anisotropy result. For our measurement we
used the AlCuLi system, because single crystals of both
the quasicrystal and a periodic (cubic) approximant can
be grown to millimeter size [14]. The cubic approximant,
referred to as R phase, is a bee lattice of essentially icosa-
hedral units, and is similar in structure, composition, and
density to the quasicrystalline phase [9,15]. A 1 mm thick
disk of AlCuLi cut from an ingot of approximately 1 cm
diameter, containing R phase and quasicrystalline phase,
was prepared at AT&T Bell Laboratories. Two speci-
mens, one of each phase, were cut from this disk with
a diamond wire saw and polished into rectangular paral-
lelepipeds. At first, a few features (possibly fissures or
grain boundaries) were observed on the sample surfaces.
As a consequence, the specimens were painstakingly pol-
ished, examined, and repolished until no surface features
were visible. Care was taken to ensure that the sam-
ple faces were flat, smooth, and perpendicular to within
0.5°. The finished parallelepipeds of cubic and quasicrys-
talline AlCuLi were approximately 1.0 X 0.7 X 0.4 and
0.6 X 0.4 X 0.4 mm, respectively. The finished samples
were each small enough to be placed entirely within a
1 mm? x-ray beam, and transmission Laue diffraction
revealed that they were both single crystals with clear
fivefold and classical diffraction patterns. A third par-
allelepiped, 0.4 X 0.2 X 0.3 mm, with a mass of only
~70 ng, was prepared from a separate sample of qua-
sicrystalline AlCuLi for comparison. Laue photographs of
this third specimen, however, showed that more than one
grain may have been present. Henceforth, these samples
shall be referred to as R (R-phase cubic approximant),
QX1 (high-quality quasicrystal), and QX2 (lesser qual-
ity quasicrystal). The quasicrystal samples may have had
some amount of phason strain, but for QX1 the transmis-
sion diffraction showed clear fivefold symmetry, as op-
posed to the classical symmetry of the R-phase sample,
and hence the three samples were sufficient to show the
correlation of symmetry and sample quality with isotropy.
The isotropies of all three samples were determined using
resonant ultrasound spectroscopy.

In resonant ultrasound spectroscopy [10,11], a speci-
men’s normal mode frequencies of free vibration are used
along with its shape and mass to determine its elastic
properties. In the present measurement, a rectangular
parallelepiped sample is held lightly at opposing corners
between two broadband transducers, one a driver and
the other a receiver, as shown in Fig. 1. Since the qua-
sicrystal samples are brittle and may have a mass as small
as 70 ug, we employ a polyvinylidene fluoride (PVDF)
piezoelectric film transducer [10], with a thickness of
only 9 um, which minimizes contact force and damage to
fragile sample corners. The driver frequency is swept and
the response at the receiver is monitored with a phase-
sensitive detector and digitized. The quality factors of
the sample resonances are relatively high, typically 103
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FIG. 1. A resonant ultrasound cell, showing a sample held
at its corners between two thin piezoelectric film (PVDF)
transducers. The strips are ~0.5 mm wide, and aluminum
evaporated on either side has a 0.5 mm overlap, creating a
0.5 mm? active area (see Ref. [11]).

to 10°. An initial scan to locate the peaks is followed
by a finer scan of each peak; each peak is then fit with a
Lorentzian, allowing 10~% to 107 precision in frequency
determination, even for weak signals. The lowest 31 reso-
nances of QX1 were recorded, with somewhat fewer
recorded for QX2 and R. Since individual normal modes
may involve torsion, shear, dilatation, or a combination,
along any axis, all principal directions are investigated in
several ways with a single spectrum, if enough modes are
used. Once a spectrum of N observed resonance
frequencies f7 (i = 1,N) has been obtained, a
Levenberg-Marquart algorithm [16] is used to fit the
data by varying the free parameters, such as elastic con-
stants, until a figure-of-merit F is minimized. Following
Ref. [11], we minimize

N o _ ft 2
F = Z(———) , 2
i=1 fi

where the f/ are theoretical frequencies calculated accord-
ing to the variational method used by Demarest [17] and
improved by Ohno [18] and Visscher et al. [19]. Once F
has been minimized, the goodness of the fit can be speci-
fied by the rms error (F/N)'/2, which is approximately
equal to the average error in fitting each frequency.

We assume in our fitting procedure that all of our sam-
ples have at least cubic symmetry, so that there are at
most three independent elastic constants. If the quasicrys-
tal is isotropic and has only two independent constants,
the value of € from Eq. (1) will be correspondingly small.
The frequencies in the measurement are determined with
good precision and accuracy, so that the accuracy of the
calculated elastic constants is limited by the accuracy with
which the geometry of the sample is determined. The size
of the sample may be taken as one physical dimension and
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two aspect ratios. Since we measure many more frequen-
cies than elastic constants, the problem is overdetermined
and the aspect ratios can be included as free parameters in
the fit. Only a single dimension is required to determine
the elastic constants, but in calculating the anisotropy pa-
rameter with a ratio of elastic constants, the dimension, as
well as the mass of the sample, cancels out. Error can oc-
cur if the actual shape of the sample differs in a systematic
way from that assumed in the fitting program, nominally
a rectangular parallelepiped. An inexact shape may result
from the limits of our polishing technique and the small
size of the samples, and shape anisotropy may appear as
elastic anisotropy in the results of a fitting procedure that
assumes an ideal shape. For a carefully shaped sample,
the sides may differ from being mutually perpendicular
by a few tenths of a degree, and the errors in ¢;; may be
a few tenths of a percent [11], sufficiently small for most
purposes. However, the present measurement requires as
little systematic error as possible, so we measured the
actual shape of QX1 by first mounting the sample on a
goniometer, and used a laser beam reflecting from the pol-
ished sample faces to determine the angles between each
side. A second-order frequency perturbation calculation
using this more accurate shape is included when fitting
the data from QX1. For the R sample, the shape was suf-
ficiently rectangular and the anisotropy was sufficiently
large that such fine tuning was unnecessary.

The resulting elastic constants c¢ii, c12, and caq,
anisotropy €, and rms error for all three samples are
given in Table I, and the anisotropy results are further
summarized in Fig. 2, which shows the rms error and
the anisotropy, with the standard deviations indicated
with error bars. The rms errors for all three data sets
are =0.1%, indicating an excellent agreement between
observed and predicted resonance frequencies, and a high
degree of confidence in the overall fits. The standard
deviations for € were obtained by a Monte Carlo method,
with the width of the scatter in the synthetic data sets
based on the residuals | f{ — f{ | in the fit to the actual

TABLE I. The elastic constants (in Mbar) and anisotropy e
for R-phase cubic approximant, high-quality quasicrystalline,
and lesser quality quasicrystalline AlCuLi. The analysis of
normal-mode frequency data for each sample assumes cubic
symmetry and three independent elastic constants; a small
value for € indicates that only two constants are independent.
The standard deviations are from Monte Carlo simulations;
the absolute accuracy of the elastic constant determination is
limited by the errors in dimensions and mass (about 1%).

Sample ¢y, ¢z Cas €l rms error® (%)
R 1.112 0.311 0.396 0.0105 = 0.0014 0.09

QX1 1.122 0.304 0.409 0.0002 = 0.0007 0.07

QX2 1.152 0.314 0.419 0.0006 = 0.0017 0.10

*Anisotropy, from Eq. (1).
*See Eq. (2).
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data. The standard deviations (and the error bars in
Fig. 2) reflect to some degree the sample quality and
the number of data points; the error for the high-quality
quasicrystal (QX1) is concomitantly the smallest of the
three, while the error for QX2 (suspected to be more
than one grain) is the greatest. It is apparent that the R
phase is measurably anisotropic, while the quasicrystal
samples are not. The anisotropy of the R phase is seen
to be comparable to that of tungsten, and differs from
zero by seven standard deviations. The anisotropy of the
high-quality quasicrystal, with € = 0.0002 = 0.0007, is
10 standard deviations, or about a factor of 10, smaller
than the anisotropy of tungsten. Hence the quasicrystal is
significantly more isotropic than the most nearly isotropic
conventional crystal to be found in the literature.

An additional test for isotropy can be performed by
presuming various crystal orientations, other than the one
initially assumed, in the theoretical frequency calculations
[11]; i.e., one uses an elastic tensor that has been rotated
relative to the axes of the crystal lattice. In this way, one
can test whether crystal misorientation affects how well
the data are fit by the model. If a crystal is anisotropic,
one should notice a minimum in the fit error when the
elastic tensor is correctly aligned with the lattice. Plots of
the figure-of-merit F versus rotation of the elastic tensor
in two of the three Euler angles show that the cubic
phase has a clear dependence on orientation, while the
quasicrystal shows none. The minimum in F for the cubic
phase is along a principal direction, important evidence
that its anisotropy is due to its crystal structure and is not
an artifact of sample quality.

In conclusion, we have shown the AICuLi quasicrystal
to be isotropic with € = 0.0002 *= 0.0007, significantly
more isotropic than conventional crystals, in accordance
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FIG. 2. The anisotropies of quasicrystalline and R-cubic
AlCuLi. The vertical coordinate shows the rms error in

fitting the frequency data for each sample. QX1 is a single
quasicrystal; in QX2 more than one grain may be present.
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with theoretical predictions. The R phase periodic ap-
proximant has been shown to possess an anisotropy which
is very small, but readily measured with resonant ultra-
sound spectroscopy. For future research it would be of
interest to study a sequence of quasicrystal samples, each
with a different amount of phason strain; some data on
the effects of phason strain on acoustic attenuation have
already been obtained [8].
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