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In this Letter we report the experimental determination of the eigenvalue spectrum, density of states,
and individual eigenfunctions in an acoustic system analogous to a two-dimensional Schrodinger equa-
tion with a quasiperiodic (Penrose tile) potential. The results show features unique to the quasiperiodic
symmetry, such as the appearance of gaps and bands with widths which are in the ratio of the golden

mean, (~/5+1)/2.

PACS numbers: 71.20.—b, 43.20.+g, 71.25.—s

Since the discovery of aluminum alloys with long-
range fivefold rotational symmetry by Shechtman et al.,'
there has been increased interest in quasiperiodic sym-
metry. While there is now a well established paradigm
of “quasicrystallography”?? concerning the possible
quasiperiodic structures, there is considerably less
knowledge about how quasiperiodic symmetry affects the
various physical properties of a system. For example, a
fundamental question is that given a (Schrédinger) wave
equation with a quasiperiodic potential field, how is the
quasiperiodic symmetry manifest in the eigenvalue spec-
trum and the eigenfunctions? For one-dimensional (1D)
quasiperiodic systems, rigorous theorems*~’ have been
derived which answer such questions: However, in two
and three dimensions there are as yet no accepted
theorems,® and, as will be discussed below, numerical
calculations®™!' have not addressed aspects of the wave
equation. In this paper we report measurements with an
acoustic experiment which simulates a two-dimensional
(2D) Schrodinger equation with a quasiperiodic poten-
tial, and which directly determines the eigenvalues, den-
sity of states, and eigenfunctions. The results show
features which seem unique to the 2D quasiperiodic sym-
metry, such as the appearance of gaps and bands in the
eigenvalue spectrum with widths which are in the ratio
of the golden mean, (~/5+1)/2. It is hoped that these
results will provide some insight for developing theories
for 2D quasiperiodic wave mechanical systems; a sugges-
tion for extending numerical calculations to search for
new effects is already apparent.

For 1D quasiperiodic systems, general theories exist;
these have been reviewed by Simon.* Renormalization-
group and dynamic mapping techniques have been intro-
duced by Kohmoto, Kadonoff, and Tang> and by Ost-
lund er al.® Since the discovery of the aluminum alloy
quasicrystals,! there has been considerably more work
with renormalization-group techniques and numerical
calculations.”'?> Some special properties of 1D quasi-
periodic systems are the following: (1) the eigenvalue
spectrum is a Cantor set, (2) there may exist a mobility
edge and a metal-insulator transition, and (3) the states
may be extended, localized, or critical.

By contrast little is known about the consequences of
quasiperiodic symmetry in two and three dimensions; the
transfer-matrix method and the renormalization-group
approach seem to be inapplicable. There are some
known theorems dealing with structure,'® such as those
involving inflation rules and Conway’s theorem, which
state that a given local pattern of some diameter will be
repeated within a distance of two diameters, and most
probably within one diameter. In the absence of a
“quasi-Bloch theorem,”® progress in understanding the
consequences of 2D quasiperiodic (Penrose tile!®) sym-
metry has relied mostly on numerical calculations.®™"!
However, these calculations have found no features
which reflect the quasiperiodic symmetry.

Despite the notable efforts in searching for unique
consequences of 2D quasiperiodic symmetry, existing
studies do not treat the problem which we wish to ad-
dress, namely, the properties of a wave equation with a
quasiperiodic potential. All of the current theoretical
research has dealt with a hopping Hamiltonian involving
a matrix embodying the quasiperiodic topology, but hav-
ing all nonzero matrix elements identical. For an actual
wave equation the problem can be reduced to a similar
matrix, but the nonzero matrix elements would be com-
plex functions of the eigenvalue, whose determination
would involve solving a complicated transcendental equa-
tion (an example is presented below). The resulting ei-
genvalue spectrum would be quite different from the
ones found with the existing theoretical models, because
now one must contend with the possibility of phase-
coherence effects in a system of scatters with a quasi-
periodic pattern. Another way of viewing the situation is
to note that another length, the wavelength, has entered
the problem. The relation between the wavelength and
the inflation and pattern repetition properties of the
quasiperiodic pattern results in new features in the densi-
ty of states.

The study of energy eigenstates of the Schrodinger
equation through the use of acoustic wave measurements
is discussed in the literature'®; basically, the salient
features of the quantum system and the acoustic system
can be made mathematically identical. A convenient
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description of our acoustic 2D quasiperiodic system as an
analog of the Schrédinger equation may be obtained
with a “tight-binding” approach, where local oscillators,
which when isolated have a single sharp eigenvalue or
resonant frequency, are coupled together to produce a
spectrum of eigenvalues. While this seems identical to
the models used in the numerical studies, there is a cru-
cial difference: In the numerical studies the coupling has
been analogous to “massless springs,” whereas in our
acoustic system the coupling is through a wave medium
(a spring with a finite mass) involving a wavelength,
phase coherence, etc.

As an example, consider a system where each local os-
cillator is a mass m on a massless spring with resonant
frequency wo, and the coupling to nearest neighbors
(NN) is through waves in other springs with sound speed
¢, individual masses mnn, and lengths /nn. Following
the notation of Ref. 11, where y(x) is the amplitude at a
site x and y(x') is that of a nearest neighbor, the equa-
tions of motion are '’

Ev/(x)=—g.[a'w(x')—av/(x)] , )
N
where in the acoustic case the eigenvalue E is equal to

the square of the acoustic resonance frequency, E =w?,
and
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where onn = (¢/InN) (mnn/m) 2 and z is the number of
nearest neighbors. These equations illustrate the com-
ments made in the earlier paragraph: If the coupling
springs were massless, the speed of sound, proportional

to 1/~/mnn, would be infinite (wonn would remain
finite), the factors in parentheses in Egs. (2) and (3)
would be unity, and the matrix elements a’ and a would
become constants, no longer functions of the eigenvalue.
This is the model used in existing numerical calculations.
However, in order to have a wave equation, ¢ must be
finite, and determining the eigenfrequencies w and a’ and
a functions of w involves a complicated transcendental
equation.

For the acoustic system to be a precise analog of the
Schrédinger equation it must have relatively little damp-
ing; i.e., the local oscillators and the coupling mechanism
must have a high quality factor (Q). For the local oscil-
lators in our acoustic simulation we use ordinary com-
mercial tuning forks (440 Hz). These have the advan-
tage that they can be mounted by the stem and still
maintain a high-Q oscillation. The tuning forks are ex-
poxied in a 2D quasiperiodic pattern into a heavy alumi-
num plate; the pattern is a standard Penrose tile formed
with two rhombuses (fat and skinny) having areas in the

T
7
=

!

=

-

-
=E=

-

s
&
[

FIG. 1. A schematic drawing of the tuning fork quasicrys-
tal. The tuning forks are mounted at the center of the rhom-
buses in the Penrose tile, with the two tines oriented in line
with the shorter diagonal (for the sake of drafting simplicity,
the tuning forks are not drawn with the correct orientation).
For the nearest-neighbor coupling, arcs of steel wire (not
shown) are spot welded from one tine of a tuning fork to that
of a nearest neighbor.

ratio of the golden mean (~/5+1)/2. An illustration of
the tuning fork quasicrystal is shown in Fig. 1. The tun-
ing forks are mounted at the centers of the rhombuses,
with the two tines oriented in line with the shorter diago-
nal. For the nearest-neighbor coupling, arcs of 1-mm-
diam steel wire are spot welded from one tine of a tuning
fork to that of a nearest neighbor. Other coupling
schemes were tested and found to be either too weak, too
lossy, or had too low a coupling wave velocity. Using the
four sides of each rhombus, four nearest neighbors are
identified, and each tine of a tuning fork is coupled to the
two nearest tines of the adjacent tuning forks.

With the coupling scheme just described each local os-
cillator has four nearest neighbors, but the nearest-
neighbor length /NN varies in a quasiperiodic pattern.
There are four different lengths: 3.7, 5.8, 7.26, and 7.77
cm. From a separate measurement of the speed of sound
c in the coupling wires, the phase shifts w/nn/c [see Egs.
(2) and (3)], within the total band of frequencies of our
experiment (385 to 525 Hz), are found to range from
~2n/3 to ~2x/6. Thus in rings of several tuning forks
there is the opportunity for constructive or destructive
interference. The variation of this interference with fre-
quency undoubtedly gives rise to the structure in the ob-
served eigenvalue spectrum; since in the Penrose pattern
the golden mean is involved in various length scales, and
thus also in the phase shifts, it is conceivable that this ra-
tio should appear in the eigenvalue spectrum.

It should be noted that the tuning forks, with two tines
each and 2D displacements and coupling forces, have
equations of motion which are more complicated than
the example illustrated in Egs. (1)-(3). However, re-
gardless of the complexity of the local oscillator and the
coupling, our system still involves the wave equation with
2D quasiperiodic symmetry.

In order to drive the oscillations of the coupled tuning
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FIG. 2. (a) The eigenvalue spectrum of the tuning fork
quasicrystal. It is determined as a composite of the resonant
spectra from twenty different positions in the Penrose pattern,
and shows the gaps and bands whose widths are in the ratio of
the golden mean (v/5+1)/2. (b) The density of states as the
inverse of the difference in frequency for neighboring eigenval-
ues.

fork system, an electromagnet is positioned near one tine
of the array, and an ac current is passed through the
electromagnet. The response of the system is monitored
with four electrodynamic transducers (electric guitar
pickups) positioned next to random tines in the array.
By sweeping the frequency of the drive electromagnet,
the resonant response of the system is detected with the
pickup transducers; the resonant frequencies correspond
to the eigenvalues of the quasiperiodic system. The ei-
genvalue spectrum, determined as a composite of the res-
onant spectra from twenty different positions in the Pen-
rose pattern, is presented in Fig. 2(a). This spectrum
shows gaps and bands whose widths are in the ratio of
the golden mean, r=(~/5+1)/2. Referring to Fig. 2(a),
we have B/la=rt, y/B=1, C/B=1, A/B=1% B/D=1>,
and other ratios involving combinations of these, with an
average deviation of & 5%. The density of states, deter-
mined as the inverse of the difference in frequency for
neighboring eigenvalues, is shown in Fig. 2(b).
Measuring an eigenfunction involves driving the tun-
ing fork array at one of its eigenfrequencies and record-
ing the motion of each of the 300 tines. It would have
been a prohibitive task to instrument and calibrate each
tine (including two-dimensional movement). Instead, a
small mirror is placed at the end of each tine, and the
tuning fork array is mounted on one wall of a dark room,
with a drawing depicting the mirror image of the Pen-
rose pattern mounted on the opposite wall. The mirrors
are adjusted so that a laser beam directed to one of the
tines is reflected to the corresponding position of the tine
in the image drawing. If a tine is vibrating, then its
motion (amplitude and polarization) will be reproduced
in the motion of the laser spot in the image drawing, but
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FIG. 3. Several eigenfunctions of the tuning quasiperiodic
system. They show the motion (both amplitude and polariza-
tion) of the system (note that the longer the laser spot, the
larger the amplitude). In (a)-(d) energy distributions have
fivefold rotational symmetry, in (e) and (f) the distributions
have a symmetry of a mirror plane.

with an amplified displacement resulting from the optical
lever arm provided by the laser beam traversing the
room. By scanning the laser beam over the entire tuning
fork array, the motion of all the tines may be observed in
the motion of the laser spots in the image drawing. A
time-exposed photograph of the moving laser spots taken
during the scan records lines, ellipses, or circles of vari-
ous amplitudes indicating the motion of each of the tun-
ing forks; this is essentially a photograph of the eigen-
function at that particular eigenfrequency.

Several eigenfunctions are shown in Fig. 3. It should
be noted that the tuning fork quasicrystal is not perfect;
there are defects arising primarily from unavoidable
variations in the spot welds between the tines and the
coupling wires. As a consequence of the adiabatic
theorem for small perturbations, the defects have a
minor effect on the eigenvalue spectrum, so that the ob-
servations concerning the gaps and bands are still valid.
However, the defects may have a much greater effect on
the eigenfunctions; furthermore, it was not possible to
align the mirrors and identify the individual tines exactly
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in the eigenfunction photographs. As a consequence the
photographs are used only to obtain a qualitative idea of
the nature of the eigenfunctions. Figure 3 illustrates
some of the basic patterns which were found. While the
original photographs have better resolution than the
reproductions in Fig. 3, some scrutiny was necessary to
discern the patterns; in Fig. 3 we have drawn lines to in-
dicate the general areas containing the larger ampli-
tudes. In 3(a) energy is uniformly distributed; in 3(b)
energy is concentrated in the center; in 3(c) energy is
concentrated in the five symmetric arms; in 3(d) energy
is both concentrated in the center and in the arms; in
3(e) energy is localized in the center and partly at the
edges; and in 3(f) energy is localized in three of the five
corners. The lack of fivefold symmetry in 3(e) and 3(f)
may be due to a combination of degenerate eigenstates.
With these results we verify that states with fivefold
symmetry can be observed and, at least for this finite-
size system, highly localized, intermediately localized,
and nonlocalized states exist. It should be noted that for
a quasiperiodic system with defects, the occurrence of
gaps in the eigenvalue spectrum creates the possibility of
more highly localized states at the band edges, and this
will have significant consequences for transport in real
icosahedral materials. '®
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