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Considerable progress has been made in the experimental observation of Anderson localization and
quantum eigenstate coherence for electrons in disordered solids. The coherence effects deduced from
conductivity measurements require some corrections for inelastic scattering, and often the necessary in-
formation is imprecisely known. In this Letter we report detailed observations of inelastic effects in an
acoustic localization experiment where parameters may be precisely controlled and measured; some

phase-correlation effects are evident.

PACS numbers: 43.20.+g, 71.55.Jv

As a consequence of Bloch’s theorem, the eigenstates
of a system described by a periodic potential are extend-
ed, having the same nominal amplitude at all positions in
space. When a random element is added to the potential
field, the eigenstate amplitude may not simply acquire a
random variation but may instead become localized, de-
caying exponentially from a particular site with a
characteristic length. This phenomenon, originally dis-
cussed by Anderson' and Mott,? is interesting not only
as an unusual consequence of disorder, but also because
it can be used to reflect the coherence of electron quan-
tum states in solids. The Anderson localization effects
are strongest in one-dimensional systems, and there has
been considerable experimental effort devoted to the ob-
servation of clear effects for electrons in narrow wires
and semiconductor channels.>* The experimental prob-
lems are formidable, for one must contend with the ef-
fects of thermal broadening of the electron energy, the
quasi one-dimensionality of the system, etc., and one
must eliminate or at least separate various inelastic pro-
cesses which weaken the eigenstate coherence. Consider-
able progress has been made, with experiments probing
fewer electron eigenstates with less confusion, but still
some corrections for inelastic effects are necessary, and
often the required information is imprecisely known. It
is possible to observe localization effects in other wave
systems, such as ones involving photons,> phonons,® or
quantum-fluid waves,” where observations may be more
straightforward. We have been making such measure-
ments in an acoustic localization experiment where we
can observe in detail eigenstate amplitude and phase, ei-
genvalue spectra and density of states, and dependence
of localization length on strength of disorder, showing
fluctuations® as a function of position within a band, sep-
aration from nearby states, etc. Recently we have made
measurements of the effect of inelastic scattering, which,
involving an extended time-dependent potential,® is not
easily determined with analytic or numerical computa-
tion. In this Letter we present detailed measurements of
the transfer of energy from one localized eigenstate to
another (phonon-assisted hopping), in the presence of a

well-defined inelastic process. Our results indicate that
estimates based only on the overlap of the amplitude of
the eigenstates'® cannot fully account for the variation in
the hopping probability.

The analogy between electron-wave and acoustic-wave
localization has been discussed in the literature.%!! The
wave functions y may be superpositions of energy states
with time dependence exp(iEt/h) for electrons, or
monotonal waves with time dependence exp(iwt) for
sound waves. For these states the wave equation may be
written

Viy+Ig?—v(rly=0, (1)

where for particles g2=2mE/h? (with m the particle
mass), and for sound waves ¢ =w/C (with C the charac-
teristic speed of sound). ¥V (r) is the potential (normal-
ized with 2m/h?) for particles and a combination of a
stiffness operator and mass density for an acoustic medi-
um. For a one-dimensional acoustic system V is easily
determined from basic mechanics or acoustics.

The one-dimensional acoustic system used in our ex-
periments is illustrated in Fig. 1. The wave medium is a
long (15 m), 0.17-mm-diam steel wire suspended verti-
cally; a tension T in the wire is maintained by a spring
attached at the lower end. The wave field y consists of
transverse waves in the wire generated with an elec-
tromechanical actuator at one end of the wire. The
periodic or nearly periodic potential field V for the wire
is provided by small lead masses (with mass m =249
%+ 33 mg) spaced along the wire with an average lattice
constant @ =15 cm; a total of fifty masses are used. The
masses are sufficiently small that the potential ¥ may be
approximated as a series of delta functions with strength
mw?/T. Experimental measurements and computer
simulations have shown that the small variations in the
size of the masses have negligible effects on the phenom-
ena which we study, as will be discussed later.

Beyond the series of masses the wire continues for a
few meters and is then covered with a long taper of cot-
ton which provides an anechoic termination. Running
parallel to the wire is a 9-m aluminum beam which acts
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FIG. 1. One-dimensional acoustic Anderson localization ex-
periment.

as a guide for a trolley carrying a C-shaped permanent
magnet. The magnet is aligned so that the wire passes
between its poles, with the lines of force perpendicular to
the wire. When the transverse wave field is present
along the wire, the magnetic field induces an emf in the
wire which is proportional to the velocity of the wire at
the position of the magnet. The emf is measured by the
grounding of one end of the wire and connection of the
opposite end (through a fine copper wire) to a preampli-
fier and two-phase lock-in amplifier referenced to the
transverse actuator signal. A motor, gear, and chain sys-
tem is used to translate the trolley and magnet assembly
along the aluminum beam. By monitoring of the posi-
tion of the magnet and the current induced in the wire,
the entire wave field along the wire, including amplitude
and phase, may be recorded.

If one considers an electron wave in a one-dimensional
potential as being represented by the transverse wave in
the wire-mass system, then an electron-phonon interac-
tion may be simulated by modulation of the longitudinal
strain in the wire. That is, for low-frequency (essentially
zero wave vector) phonons, the electron-phonon interac-
tion may be modeled by replacement of the potential
V(r) in Eq. (1) by V(r +recosQt) where ecosQt is the
strain field of a phonon of frequency Q.'? In our experi-
ment the longitudinal strain is modulated directly with a
second electromechanical actuator at the end of the wire,
as shown in Fig. 1. By driving the longitudinal actuator
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FIG. 2. Response of the wire at one end as a function of the
frequency of the transverse actuator at the opposite end
(analogous to electron Fermi energy in a conductivity experi-
ment). (a) Periodic potential. (b) 2% random potential.

with a synthesized ‘“‘thermal phonon” spectrum, we could
simulate finite-temperature effects. However, in order to
study an isolated inelastic-scattering process in detail, we
use only a single frequency Q, providing the well-defined
time-dependent potential ¥ (r +recos Q).

In the wire-mass system disorder may be introduced
by variation of the sizes of the masses (alloy-type disor-
der) or by variation of the positions of the masses
(liquid-type disorder).'> We found that the liquid-type
disorder, even for very small deviations from periodicity,
produced more dramatic localization effects. For exam-
ple, variation of the positions of the masses by less than
1% produced significant localization, while the inherent
~13% variation in the sizes of the commerical lead
masses resulted in localization lengths which were much
larger than the size of our system. For experimental
convenience we varied the positions of the masses;
several sets of measurements were made with the posi-
tions randomly varied within maximum displacements
from lattice sites of 0.007a, 0.014a, 0.024, and 0.05a. Re-
sults with static disorder configurations were in good
agreement with computer simulations.

Before studying the localization effects, we first veri-
fied Bloch-wave behavior by making measurements with
the masses spaced periodically. The frequency response
(band structure) of the system was measured by our
monitoring the transverse wave amplitude near one end
of the series of masses while sweeping the frequency
(analogous to electron Fermi energy) of the transverse
actuator at the opposite end. Results for the second pass
band (which corresponds to fitting approximately one-
half transverse wavelength between the masses) are
shown in Fig. 2(a). The response shows distinct edges
separating the pass band from transmission gaps on ei-
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ther side and approximately fifty eigenfrequencies corre-
sponding to the eigenstates of the fifty-site system. The
two internal regions of low response, as well as slow vari-
ations in the eigenstate amplitudes, may be attributed to
the —13% variation in the sizes of the commercial lead
masses. The band is fairly narrow, extending from
about 760 to 840 Hz. All the eigenstates have about the
same lifetime, 7=0.9 £ 0.1 s. If the longitudinal strain
modulation is applied to the periodic system, states cor-
responding to distinct one-, two-, etc., phonon processes
appear in the gaps. By driving the static periodic system
at one of the eigenfrequencies and translating the mag-
net, we record a Bloch-wave eigenstate; two examples
are presented in Figs. 3(a) and 3(b), which show the
eigenstate amplitude as a function of position along the
wire. These eigenstates are clearly extended, and are in
qualitative agreement with theoretical Bloch eigenstates.

The inelastic-scattering measurements were made with
2% disorder, i.e., with the masses displaced from the
periodic lattice sites with a flat random distribution be-
tween *0.02a. The frequency response of a static disor-
dered configuration is shown in Fig. 2(b), which illus-
trates the dramatic departure from the Bloch response in
Fig. 2(a). At least one eigenstate appears in the low-
frequency gap. Eigenstates corresponding to various
peaks in Fig. 2(b) are shown in Figs. 3(c)-3(g). The
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FIG. 3. Eigenstate amplitude as a function of position along
the wire. (a), (b) Bloch-wave states. (c)-(g) Eigenstates of
the 2% disordered system. (h) Mixing of states c and d due to
the time-dependent potential. The sharp minima in the ampli-
tude [~45 shown in (b)] indicate the positions of the masses,
spaced at the lattice constant a =15 cm.

most localized state, Fig. 3(c), was the low-frequency
gap state in Fig. 2(b). The eigenstate in Fig. 3(d) was
located approximately at the original Bloch band edge,
and the other eigenstates in Figs. 3(e)-3(g) were inside
the band. The eigenstates in Figs. 3(c) and 3(d) were
remeasured with a logarithmic amplifier, and linear fits
to this data indicated localization lengths of (2.2 +0.3)a
and (3.8 £ 0.3)aq, respectively.

For the inelastic-scattering measurements one of the
eigenstates in Figs. 3(c)-3(g) was selected as an initial
state |i), and another was chosen as a final state | .
The transverse actuator was driven at the initial-state
eigenfrequency w;, and the longitudinal actuator was
driven at the frequency for resonant phonon-assisted
hopping, @ =|®; —ws|. The response of the system,
represented as a mixture a|i)+pB]|f), was then mea-
sured as a function of the amplitude of the longitudinal
strain modulation amplitude . Steady-state response
consisted of energy being transferred back and forth be-
tween the two states |i) and |f) at the frequency Q.
The time average of the mixture for a particular longitu-
dinal strain amplitude is shown in Fig. 3(h). If the ac-
tuators were stopped, energy would be transferred to the
final state with a hopping probability of |B/a|2 A plot
of the measured hopping probability as a function of the
longitudinal drive amplitude is presented in Fig. 4, where
the initial and final states were those of Figs. 3(d) and
3(e), respectively. Other pairs of states, dc, fe, fc, ge,
and gc, where the letters refer to Fig. 3, gave similar
plots, but with widely varying vertical scales (to be dis-
cussed below).

For convenience in comparing our data with other An-
derson localization systems, we have converted the longi-
tudinal strain modulation amplitude ¢ to a normalized
(dimensionless) inelastic-scattering rate. From Ziman, '?
an electron-phonon scattering rate may be given as

Hopping probability
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FIG. 4. Hopping probability as a function of strain ampli-

tude, expressed as a normalized inelastic-scattering rate (see
text).
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S =Qn/h) | €dE/d¢| *p(E), where the deformation po-
tential 9E /d¢ is the rate of change of a system eigenval-
ue E with a static strain £ and p(E) is the density of
states. We assume that 1/p(E) =AE, the average sepa-
ration between eigenvalues, and define the normalized
inelastic-scattering rate as s =hS/AE =2r| (¢/AE)E/
de| 2 For our acoustic system s =2x| (¢/Aw)dw/d¢| 2,
where the eigenfrequency spacing A and the eigenfre-
quency shift dw/de are measured directly. It should be
noted that interesting behavior should occur when
£0w/0e~Aw, or when s ~2x; at this point the strain
causes the eigenfrequencies of neighboring states to coin-
cide with that of the initial state. In Fig. 4 it can be seen
that the resonant phonon-assisted hopping becomes non-
linear when s > 1, and saturates when s > 2.

In the region s <1 the hopping probability is linearly
related to the longitudinal strain amplitude squared, and
we have attempted an analysis using first-order time-
dependent perturbation theory. The theory requires
evaluation of the matrix element {f |8V /d¢|i), and this
is difficult to do in detail. It is usually assumed'® that
for localized states the overlap is dominated by the ex-
ponential decay of the eigenstate amplitudes. Motivated

by this we write |{f|dV/d¢|i)|?>=|0E/d¢e|2AD,
where
2
a={J Ty | vt lax] @

and ® is a correction due to the contribution of the
phases of the eigenstates in the matrix element. The
usual assumption corresponds to ®=const (i.e., ® is
fixed by an averaging over some assumed random distri-
bution of phases!?).

From first-order time-dependent perturbation theory
we find |B/a|?=(/r)(Aw7)2A®s. By comparing this
expression with the linear region of our plots of hopping
probability versus s, and with 4 in Eq. (2) determined
from our recorded data, we can obtain values for ®. For
the six pairs of eigenstates dc, fc, gc, de, fe, and ge from
Fig. 3, @ is found to be (0.21, 0.028, 0.016, 0.43, 0.31,
and 0.004) x10 ~3, respectively. The small values of ©
indicate that the operator 9V /d¢ weakly couples the or-
thogonal eigenstates |i) and |f). From the large fluc-
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tuations in @ for the different pairs of states we conclude
that a constant random-phase correction is a poor ap-
proximation; the large variations in the scale of |B/a|?
cannot be wholly accounted for with the variations in A.
At least in the case where the phonon wavelength is
larger than the localization length, the phase as well as
the amplitude overlap strongly influences the hopping
rate. Local phase correlation and the restriction of the
overlap integral to a limited region of space may make
the eigenstate phase an important factor. More studies
of the effects of phase correlation between different lo-
calized eigenstates would be of interest.
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