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Because its underlying principles are so fundamental, holography has been studied and applied in 
many areas of science. Recently, a technique has been developed which takes the maximum 
advantage of the fundamental principles and extracts much more information from a hologram 
than is customarily associated with such a measurement. In this paper the fundamental principles 
of holography are reviewed, and a sound radiation measurement system, called nearfield acoustic 
holography (NAH), which fully exploits the fundamental principles, is described. 

PACS numbers: 43.20. Ks, 43.20.Rz, 43.20. Ye 

INTRODUCTION 

Since the time of its conception around 1950, hologra- 
phy I has become an increasingly powerful research tool. 
However, in conventional optical and acoustical holography 
the full potential of the technique has not been realized. In 
acoustical holography one can obtain much more informa- 
tion from a hologram than is customarily associated with 
such a measurement. In this paper we outline the fundamen- 
tal theory and experimental and signal processing require- 
ments for what we refer to as "generalized holography" 
which fully exploits the potential of the technique. We also 
describe the practical application of generalized holography 
in an actual experimental measurement system called near- 
field acoustic holography (NAH). 

On a fundamental level, the great utility of holography 
arises from its high information content; that is, data record- 
ed on a two-dimensional surface (the hologram) may be used 
to reconstruct an entire three-dimensional wave field, with 
the well-known result of obtaining three-dimensional im- 
ages. A popular science magazine once noted that ifa picture 
is worth a thousand words, then a hologram is worth 
10003/2, or approximately 32 000 words. In the case of digi- 
tally processed holograms this statement is literally correct; 
if a sampled two-dimensional hologram contains 1000 digi- 
tal words of data, and if the reconstruction is performed' for a 
cubical three-dimensional region, then the resulting recon- 
struction will contain 10003/2 digital words of data. An actu- 
al digitally sampled hologram may contain hundreds of 
thousands of words of data, and the amount of reconstruc- 
tion data is limited only by the restriction of computation 
time. In generalized holography, the reconstruction may be 
expanded in other ways as well. For example, in nearfield 
acoustic •holography, the recording of the sound pressure 
field on a two-dimensional surface can be used to determine 

not only the three-dimensional sound pressure field but also 
the particle velocity field, the acoustic vector intensity field, 
the surface velocity and intensity of a vibrating source, etc. 
Furthermore, each data point in the hologram need not be 
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simply phase information from single frequency radiation, 
but may be a complete time sequence recording from inco- 
herent "white-light" or noise radiation; in this case one may 
not only reconstruct a three-dimensional field, but may also 
observe its evolution in time. An interesting application 
would be the visualization of energy flow from a transient 
source. Generalized holography also removes the generally 
assumed limitations of conventional holography, such as the 
resolution of a reconstructed image being limited by the 
wavelength of the radiation 2-6 and the limited field of view 
resulting from conventional recording requirements. 

I. EXAMPLE OF APPLICATION 

It would be useful to precede discussion of the theory 
and implementation of generalized holography with a brief 
description of a fundamental research area in acoustics and 
the utility of holographic techniques when applied to it. 7 
This fundamental research area concerns the radiation of 

sound into a fluid medium (air or water) by a complex vibra- 
tor. A basic goal of research in this area is to correlate the 
properties of the vibrator (such as structural features, vibra- 
tion modes, existence of damping material, etc.) with proper- 
ties of the radiated sound field (such as the total radiated 
power, the farfield directivity pattern, the vector intensity 
field, etc.). Though this is a basic field of study, it turns out to 
be a difficult problem even in the simplest cases, and nearly 
intractable with more complex sources. Consider the sound 
field of a plane rectangular vibrator. When the plate is sur- 
rounded by an infinite rigid baffle, calculation of the generat- 
ed sound field is quite easy. However, the same plate when 
unbaffled produces a sound field which is impossible to de- 
termine analytically, and can be approximated only with la- 
borious calculations on a large computer. Naturally, if the 
vibrator is made more complex with the addition of ribs, etc., 
the ensuing calculations become all the more ineluctable, 
thus providing little insight into how the vibrator couples 
acoustic energy into the medium. 

Understanding the relationship between vibrator fea- 
tures and sound field properties is a difficult problem from 
the standpoint of acoustic experimentation as well. A simple 
example would be the case of a rectangular plate vibrating in 
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a normal mode with some definite nodal pattern. The plate 
may have some nominal displacement amplitude producing 
some nominal particle velocity amplitude Vo and pressure 
amplitude Po in the medium around the plate. If the plate is 
vibrating below coincidence (assuming the typical plate di- 
mension is smaller than the acoustic wavelength in the medi- 
um), s only a small amount of acoustic energy will be radiated 
into the farfield. A similar velocity amplitude Vo and pressure 
Po on another plate vibrating above coincidence will result 
in a large amount of energy being radiated into the farfield. 
The conclusion to be drawn from this example is that mea- 
surement of only vibrator displacements, particle velocity, 
or sound pressure around a vibrator is insufficient to deter- 
mine how energy is delivered into the sound field by the 
vibrator. At high frequencies, well above coincidence, the 
problem is simpler as areas of the vibrator with large dis- 
placement amplitudes are usually the primary energy 
sources. Consider, howe.ver, sound sources that radiate 
wavelengths that are larger than the typical dimensions of 
the vibrator's features, as in the case of rotating machinery, 
musical instruments, etc. Here, we find many instances 
where areas of large displacements or large pressure ampli- 
tudes are not significant energy sources and may even be 
large sinks of acoustic energy. 

The key to understanding how a vibrator radiates sound 
is the determination of the acoustic intensity vector field S(r). 
For radiation of a single frequency, intensity is defined as the 
product of the in-phase components of the pressure ampli- 
tude and the velocity amplitude9: S(r)= •Po(r)vo(r)cos 0. 
This quantity specifies at each point in space the rate and 
direction of acoustic energy flow. When the component of 
this field normal to the surface of a vibrator is large, this 
indicates the location of a large energy source. It is this tre- 
mendously vital property of the intensity field that has gen- 
erated so much interest in its measurement, and methods 
such as the "two-microphone" technique 1ø have been devel- 
oped. Serious limitations in such techniques stem from the 
fact that they measure only one component of the vector 
intensity at a single point in space, or in an average over some 
region in space. This limitation may lead one to mistakenly 
identify an area as a radiating source when it may in fact be a 
part of a circulating energy flow pattern. ? These patterns, 
which occur frequently, represent real energy flow (as op- 
posed to a reactive out-of-phase kind of energy) in which 
energy leaves an area of a vibrator, only to quickly (within a 
fraction of a wavelength) turn around and flow back into 
another part of the vibrator, and return through the vibrator 
back to the "source" area. From this it is clear that in order 

to measure with confidence the sound energy radiation from 
a complex vibrator, a detailed map of the energy flow field 
must be obtained. Mapping the three components of the vec- 
tor intensity field at tens-of-thousands of points in space with 
a point-by-point probe is impractical. With nearfield acous- 
tic holography, however, such information is readily ob- 
tained. The basic features of the actual NAH system, which 
will be described in more detail later, are as follows: 

(1) Only a single, noncontact measurement over a two- 
dimensional surface is required. This is achieved using a 
planar grid of regularly spaced microphones. 

(2) Comprehensive results are produced in minutes. 
Such rapid turnaround time results in more time spent ana- 
lyzing the vibrator/radiation relationship rather than mak- 
ing tedious measurements. 

(3) The measurement covers a large area (10 m •) and 
subtends a large solid angle from the sources. Multidirec- 
tional sources can be examined without missing informa- 
tion. 

(4) The measurements have high spatial resolution: Our 
prototype system can pinpoint energy sources to within • 5 
cm. 

(5) Minutes after measurements, computer graphic dis- 
plays of the following information are produced: 

(a) The sound pressure field, from source to farfield. 
(b) The particle velocity field, from source to farfield. 
(c) Modal structure of a vibrating surface as determined 

from the normal particle velocity evaluated at the 
surface. 

Id) The vector intensity field, which maps the energy 
flow throughout the sound field and pinpoints ener- 
gy producing sources. 

(e) The farfield radiation pattern. 
(f) The total radiated power. 
In addition to graphic stills and hard copy output, the 

fields (a)-(e) listed above may be displayed evolving in real 
time through the use of motion-picture computer graphics. 
Such graphic visual information permits a researcher to 
quickly discern salient features (effects of fluid loading, pres- 
ence of traveling waves, for example) of the otherwise ob- 
scure interaction between a complex vibrating structure and 
the acoustic medium. Just how generalized holography gen- 
erates so much information efficiently is discussed in the 
following section. 

II. CONVENTIONAL AND GENERALIZED 
HOLOGRAPHY 

Holography in its basic form is really quite straightfor- 
ward. Measurements of a wave field are made on a two- 

dimensional surface, and then used to calculate the complete 
wave field in a three-dimensional space. The sources of the 
wave field may be scattering (or diffracting) objects or active 
sources. Measurements are usually made on a planar surface 
(the hologram plane), and these data are used to reconstruct 
the three-dimensional field. What makes this explosion of 
information possible is the fact that a known Green's func- 
tion (as will be discussed subsequently) can be used, and the 
fact that the field being measured obeys the wave equation. 
Holography is unique in acoustic measurement techniques 
precisely because it takes the maximum advantage of this 
simple equation. 

The paragraph above provides a basic definition of gen- 
eralized holography. Conventional holography suffers from 
significant restrictions and limitations. In the majority of 
applications of conventional holography: 

(1) The hologram is recorded with single frequency radi- 
ation. No broadband or noise sources are used. 

(2) The hologram is recorded with a reference wave and 
primarily phase information only is retained with a "square- 
law" detector. 
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(3) The wavelength of the radiation limits the spatial 
resolution of the reconstruction. 2-• This means, for example, 
that two point sources cannot be resolved if they are separat- 
ed by less than a wavelength. Naturally, in optics this limita- 
tion does not pose any diffculties since the optical wave- 
lengths are so small. However, in acoustics, where a large 
class of long wavelength radiators (vibrating machinery, mu- 
sical instruments, etc.) is considerably smaller than the radi- 
ated wavelength, this limitation prevents the location of fea- 
tures which might be crucial to understanding the energy 
radiation. 

(4) A hologram which records a specific scalar field can 
only be used to reconstruct that same field. Thus, in conven- 
tional acoustical holography, a measurement of the sound 
pressure field cannot be used to reconstruct an independent 
particle velocity field or the vector intensity.field, and one is 
unable to map the source or flow of acoustic intensity. Con- 
ventional holography cannot offer the dramatic advantages 
described in tl•e preceding section. 

(5) A conventional hologram must be recorded many 
wavelengths from the source (i.e., in the Fresnel or Fraun- 
hofer zone). 11 Thus, due to the practical limitation in holo- 
gram size, the hologram may sub. tend a small solid angle 
from the source. A directional source may not be properly 
recorded because of this, and important information might 
be missing. 

In the past, as techniques of optical holography were 
used to form the basis of acoustical holography, these limita- 
tions were carried over into acoustical holography. By re- 
examining the fundamental theory ofhol0graphy the limita- 
tions traditionally associated with long-wavelength acoustic 
holography can be removed. 

III. FUNDAMENTALS OF GENERALIZED HOLOGRAPHY 
A. General 

As discussed in the preceding sections, generalized ho- 
lography involves the measurement of a wave field on an 
appropriate surface and the use of this measurement to 
uniquely determine the wave field within a three-dimension- 
al region. This description indicates that generalized holog- 
raphy is equivalent to the use of a Dirichlet boundary condi- 
tion 1: on a surface for which the Green's function is known. 

One usually imagines boundary value problems as having 
boundary conditions determined by a source (for example, a 
vibrating surface in an acoustics problem); such problems 
are difficult because the source may provide conditions for 
which there is no known Green's function. In generalized 
holography, one simply measures a uniform (Dirichlet or 
Neuman) boundary condition on a surface for which there is 
a known Green's function. The holographic reconstruction 
process is then simply the convolution (or deconvolution) of 
the measured boundary values with the Green's function. In 
theory this is a straightforward process; in practice some 
care must be taken in order to identify and avoid the limita- 
tions of conventional holography. The causes of the limita- 
tions occur in the method of-measuring the boundary data, 
in the formulation of the Green's function, and in the evalua- 
tion of the convolution integral. These areas will be dis- 

cussed in subsequent sections. In later sections the calcula- 
tion of quantities other than the measured wave field will be 
discussed. We begin with a description of the formal assump- 
tions required for generalized holography. 

The basic assumption is that some sources are creating a 
wave field •b(r,t } (a function of position r in a three-dimen- 
sional region of space and time t } which, within a three-di- 
mensional region of interest, satisfies the homogeneous wave 
equation: 

1 02•b =0. (1) V2• c 2 0t 2 
Here, V 2 is the Laplacian operator and c is a constant propa- 
gation speed. The following is further assumed: 

(1) There is a surface $ enclosing the three-dimensional 
region of interest for which there is a known Green's func- 
tion G(rlrs) satisfying the homogeneous Helmholtz equa- 
tion for r inside $ and vanishing (or having a vanishing nor- 
mal derivative)for r = r sonS. Part of S may be at infinity; in 
practice the part of S not at infinity will be a level surface of 
some separable coordinate system which is in close contact 
with the sources. 

(2) There is a surface H (the hologram surface) which 
may coincide with S or have a level surface parallel to S for 
which •b(rH,t) (or its normal derivative) can be measured or 
assumed for all r H on H and all t. 

If the above conditions are met, then •b(r,t ) for r inside S 
can be uniquely determined from •b(r•,t ) with r• on H. The 
exact procedure and a discussion of the consequences result- 
ing from deviations from the assumptions are presented in 
the following subsections. 

B. Time dependence 

The first step in finding •b(r,t ) from •b(ru,t ) is to Fourier 
transform in time: 

•(r,co ) = ;• •(r, t )e e'øe dt ( 2 ) 
and 

•(r•/,co) = f; /•(r•/,t )e iø•e dt. (3) 
The symbol - indicates a complex field having an ampli- 
tude and phase depending on r. The wave equation becomes 
the Helmholtz equation 

V2•(r,o)} + k 2•{r,o)} = O, (4) 
with wavenumber k = w/c. It should be noted that formally 
the boundary data •(rs,t ) must be measured for all time 
- oo <t< oo. Here, •P(rs,t ) may be measured within a finite 

time window of duration Tif •rs,t) is known to be periodic 
with period T. For a noise source, one may assume that there 
exists a time scale T for which statistical averages become 
stationary within specified limits of fluctuation•; in this case 
also a finite Fourier transform is sufficient. For most noise 

sources a reasonable T can be used; however, there are ex- 
ceptions where T may be so large as to preclude the acquisi- 
tion of a manageable amount of data. An example would be a 
high-frequency transient in a highly reverberant room. In 
digital holography, •p{r•,t ) is sampled at N discrete points in 
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time t n = trH -}- n T/N (noting that the starting time tr,, may 
be different for different positions on the surface H }. It is 
assumed that the sampling is accomplished at the Nyquist 
rate to prevent aliasing in the time domain. Expression {3} 
becomes 

.• eiO•mtrH N--1 }ea•nm/N ) T •{rH,(.t)m }•.• (n•= 0 •(rH,t n •, {5) 
where (.t) m = 2•m/T and rn is a non-negative integer less 
than N/2. The summation in large parentheses can now be 
accomplished with a fast Fourier transform {FFT} computer 
algorithm. The errors associated with the approximation (5} 
are not unique to holography but are common to all signal 
processing involving discrete, finite window sampling. Since 
discussions of these errors can be found in any text on signal 
processing, TM we shall not concern ourselves with them here; 
the more interesting aspects of generalized holography are 
found in the spatial, rather than the temporal, signal process- 
ing. For the purpose of the spatial analysis in the next sec- 
tions, it can be assumed that the sources are driven at fre- 
quencies (D m = 2•m/T with m( < N/2) some integer and T 
and N fixed. For most sources it can be assumed that the 

wave field generated by these harmonic sources does not 
differ significantly from the actual wave field. If the actual 
operating frequency of the source is known, then signal pro- 
cessing techniques can be used to correct •(rH,CO m }. At any 
rate, for sources operating at the set of frequencies COrn, 
expression {5} becomes exact. 

For the spatial analysis we consider a fixed value of co so 
that there is a fixed wavenumber k = co/c and a single char- 
acteristic wavelength A = 2•c/co. The spatial problem is 
now to find the complex field •b(r} satisfying the homogen- 
eous Helmholtz equation 

V2•r} -•- k 2•(r} = 0, (6) 
for r within the three-dimensional region of interest, given 
•b{rH} for rH on the hologram surface H. 

At this point the source of one of the limitations of opti- 
cal holography can be discussed. In order to carry out the 
s_patial processing it is necessary to use the complex field 
•b{r H ), amplitu_de as well as phase, for each temporal frequen- 
cy. In theory •b(r•} can be found from •b(r•,t }; however, in 
optics there is no detector fast enough to record the real-time 
development of the wave field. Instead the recorded wave 
field must contain only a single temporal frequency, the 
source wave field must be mixed with a reference wave, and 
the resultant is recorded with a square-law detector. ll The 
contributions to this (zero frequency} recording which come 
from the cross terms in the mixed wave field can be used to 

obtain some information about •b(r•}; however, the ampli- 
tude and phase information have become irretrievably inter- 
mixed. In practice, optical holograms are measured many 
wavelengths from the source (in the Fresnel or Fraunhofer 
zone}, where the amplitude information has become unim- 
portant (having a simple spherical wave dependence on dis- 
tance from the source} and only the phase information is 
significant. The phase information contained in the optical 
hologram cross terms can be processed as •b{r•}; however, 
the lack of precise amplitude and phase information and the 
requirement of recording in the Fresnel or Fraunhofer zone 

result in the limitations of conventional optical holography 
as described in Sec. I. These limitations will be discussed 

further in a later subsection. For generalized holography it is 
assumed that •b(rH} is known. 

In acoustical holography it is possible to record •b(r•,t } 
with conventional experimental techniques and precisely de- 
termine •b(r• }. It is interesting to note that early implementa- 
tions of acoustical holography were copies of optical systems 
in that reference waves were used and square-law recordings 
were made in the farfield of the source. 15 

C. Spatial processing 

Since it is assumed that the Green's function G(rlrs) 
satisfying the homogeneous Dirichlet condition on the sur- 
face Sis known, then the solution •b(r} for Eq. (6} can be found 
with a surface integration l: : 

"' 1 ;• •{rs)•nG{r[rs)d2rs, {7) •p(r) = 4rr 
where OG/On is the normal derivative of G with respe? to r s. 
If the surface $ is the same as the surface H, where •p(rn) is 
measured or assumed, then the dete•ination of •(r) is com- 
plete. Ifil lies inside S, then processing proceeds as follows. 

In practice, the Green's function G is •own provided 
that the par of S not at infinity is the level surface of a 
separable coordinate system. We denote the three spatial co- 
ordinates of this system as •, •2, and •3, with the level sur- 
face given by •3 = • s 3, a constant. According to the assump- 
tions of generalized holography (in Sec. I) the hologram 
surface is given by •3 = • n where the constant • • > • • de- 3• 

scribes a surface inside S. In te•s of •, •2, and •3 Eq. {7) 
becomes 

4• 

but this cannot be evaluated directly because •{•1,•2,• •)is 
known instead of •{•1,•2,• •). If expression {8) is evaluated 
for •3 = • • we obtain 

where 

) = --(a, t%) ß 
4rr Orl ,=•-• 

The right-hand side of Eq. (9) is a two-dimensional convolu- 
tion; by using the convolution theorem Eq. (9) can be inve•- 
ed to obtain •(•1,•2,• •)in terms of- H •1,•2,• 3 )' Denoting a 
two-dimensional spatial Fourier transfo• by • and its in- 
verse by •-l, we have from Eq. {9) and the convolution 
theorem 
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Solving for •(•'1,•'2,•' •)yields 
,• • H A 

Once •1'•2'•)is found from the hologram data 
•(•1,•2,•), then •. (8)is used to reconst•ct •1,•2,•3) 
over the entire three-dimensional region inside S. It should 
be noted that the two-dimensional Fou•er transfo•s used 

in •s. (10) •d ( 11 ) may be in the fo• of decompositions in 
te•s of a complete set of eigenfunctions approp•ate for the 
coordinate system used. In fact, the Green's function is 
usually only known in te•s of such a decomposition. This 
feature will b•ome evident in subsequent subsections. 

If instead of •(rs) one dete•ines its nodal de•vative 
with respect to r s, O•/On(rs), then •. (7) is replaced by 12 

•(r) = • • (rs)G (r[rs) d 2r s , (12) 
where the Green's function G now must satisfy a homogen- 
eous Neuman condition on S. Processing in terms of a sep- 
arable coordinate system proceeds • before. 

De•vatives of the field •(r)with respect to the three 
spatial coordinates may be transferred to the Green's func- 
tions in Eqs. (7) and (12), so that calculations of such quanti- 
ties simply involve processing with a different kernel. 

It is impo•ant to note that all of the fo•ulations dis- 
cussed above [Eqs. (7)-(12)] are exact; there have been no 
approximations which would lead to resolution limits, etc. 
•uations (7) and (12) are not approximate expressions of 
Green's theorem, nor are they approximate solutions to the 
Helmholtz integral equation; they should not be confused 
with the approximate fo•ulas used in diffraction prob- 
lems. 2 The Green's functions in •s. (7) and (12) should not 
be confused with the free-space Green's function even 
though in some cases it has an identical fo•. Histo•cally 
•s. (7) and (12) are referred to as the first and second Ray- 
leigh integrals. la 

D. Plane generalized holography 

In conventional holography, holograms are usually re- 
corded on plane surfaces, and in generalized holography the 
processing of plane holograms is the easiest from a computa- 
tional point of view. Other hologram surfaces (cylindrical, 
spherical, etc.) can be used when they more closely conform 
to the shape of the sources. When the sources have odd 
shapes which do not conform to the level surface of a separa- 
ble coordinate system, then plane generalized holography 
may be used in conjunction with a finite element technique; 
this will be discussed in Sec. VI. In any case the features of 
plane generalized holography represent all forms of general- 
ized holography. The discussion of plane holography given 
below will present the basic equations underlying the actual 
nearfield acoustic holography computation algorithms, and 
will illustrate in detail the departures from conventional ho- 
lography and the sources of problems in real applications of 
generalized holography. 

For plane holography the separable coordinate system 
is of course the Cartesian system with rectangular coordi- 
nates (x, y, z). The surface S (described in Sec. III A) is taken 
to be the infinite plane defined by z = zs (a constant) and the 

infinite hemisphere enclosing the z > Zs half-space. It is as- 
sumed that the sources lie in a finite region just below the Zs 
plane, and that the field which they generate obeys the Som- 
merfeld radiation condition • [i.e., r (O•/Sn - ik•)vanishes 
on the hemisphere at infinity]. As an aid in understanding, it 
is useful to assume that the sources are planar, such as vibrat- 
ing plates, etc., lying in the Zs plane; nonplanar sources and 
depth resolution below the Zs plane will be discussed later. 

For expression (7) relating •b(x, y, z)to 90(x, y, Zs), we 
need the Green's function which satisfies the homogeneous 
Dirichlet boundary condition on Zs; this is given by 12 

G (x, y, zrx', y', z') 

exp [ ik x/ (x - x'} 2 + { y - y'}2 + (z - z'} • ] 
- x') + (y - + (z - 

exp [ ik • (x -- x') 2 + (y -- y,)2 + (z + z' -- 2z s)2 ] 
xJ(x - x') + ( y -y'): + (z + z' - 2Zs): 

The normal derivative (8/Sz') at z' = Zs is 

-- 4rcG '(x - x', y - y', z - Zs) 

(13) 

8G 8 
- ,(x, y, zlx', y', %) - - 2 -- 

8n 8a 

X (exp [ ik x/(x -- x')2 + ( y -- y') 2 
(14) 

so that •. (7)becomes 

y, z) 

= 

(15) 

It should be noted that expression (13) is not the flee-space 
Green's function 12 which has just one te• in the fo• 
exp(ikR )/R. Although expression (14)follows this fo•, the 
flee-space Green's function is not used in this boundary val- 
ue problem. Equation (15) is not an approximate fo• of 
Green's theorem with one of the flee-space Green's function 
te•s dropped, as is sometimes mistakenly assumed. 

Usually the hologram data is not recorded on the 
sources (z = Zs) but rather on a plane z = z• > Zs above and 
parallel to the source plane. Ev•uating Eq. (15) with z = z• 
yields 

y, 

= -zWx' 

(16) 

where •(x, y, zs) is the hologram data (assumed to be avail- 
able for all x and y in the zs plane). Since zs - Zs is a con- 
stant, •. (16) is a two-dimensional convolution, and 
•(x', y', Zs) can be found in te•s of •(x, y, zs) with the con- 
volution theorem. W• denote the two-dimensional spatial 
Fourier transfo• as •, 
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z,,) 

= f f; •(x, y, zH)e - i(kxx + ky y) dx dy (17) 
and the inverse transform as •--1. With the convolution 

theorem we can rewrite Eq. (15) as 

•(x,y,z)=•--l[•(kx,ky, zs)G'(kx,ky, z-zs)] (18) 
and Eq. (16} can be written as 

, z,,) = z)a z,, - . 
Solving Eq. (19} for •p(kx,ky, Zs} and substituting in Eq. {18} 
yields 

A 

•(x,y,z)•--l[•(kx,ky, ZH)(•G'(kx'ky'z--zs)l . a z,, - ) 
(20) 

Equation (20) is the expression which gives the h_olographic 
reconstruction of the three-dimensional field •p(x, y, z) in 
terms of the (Fourier transformed) holegram data 

y, z,,). 
From •Eq. (14) the two-dimensional spatial Fourier 

transform G' can be found explicitly: 

k 2 + k 2 <k 2 

k 2 q_ k 2 2 ,, •>k . 
(21) 

A 

The interpretation ofG '(k•,k.v, z -- Zs)and its role in Eq. (18) 
is as follows. 

The source plane at z = Zs is considered as a superposi- 
tion of surface waves exp(ik•x + ik• y)with amplitudes 
•p(k•,k•, z• ). Since•there are no restfictions on the nature of 
the sources, then •p{kx,ky, Zs) can have nonzero values for 
any point in the two-dimensional k space {k•,k• ). In fact, if 
t•he sources are of finite extent in the Zs plane, then 
•p{k•,k•, Zs) must be nonzero for arbitrarily large values of 
k,,• and k•. •7 One must then consider both forms of 
G '{k•,k•, z - Zs ) in Eq. {21) and their role in Eq. {18). When 
k } + k } <k 2, then the surface waves in the Zs plane simply 
couple to ordinary propagating plane waves in the three- 

dimensional region z> Zs. These plane waves have ampli- 
tudes •p(kx,ky, Zs }, which travel in the direction given by the 

2 }, and have wave vector wave vector (k•,ky, x/k 2 __ k 2 _ k y x 

magnitude k so as to satisfy the original Helmholtz equation 
[see Eq. {6)]. The kernel or "propagator" in Eq. {18), 

- = [ - z)x/k - k - k ], 
simply provides the plane-wave phase change in going from 
the z s plane to the z plane. The propagating plane wave 
emerges from the z s plane at just such an angle so as to 
exactly match the surface wave in the z s plane. 

2 2• When k • + k y > k then there is no way that one can 
add a real z component to (k• ,k•) and form a three-dimen- 
sional plane wave with wave vector magnitude k. If 

2 2 

k •- + k y > k then the length of the surface wave is shorter 
than )• = 2rr/k; having a three-dimensional plane wave (of 
wavelength)l, ) emerging from the z s plane at some angle can 
only match surface waves which have two-dimensional 
wavelengths greater than or equal to 2. Surface waves with 
k 2 2 2 • + k• > k must be matched with evanescent waves •8 
which have imaginary z components in their wave vector, 
and which exponentially decay in the z direction as 

exp [ - {z -- Zs }x/k } + k } - k 2 Ix This is correctly repre- 
sented in Eq. { 18} with the form of G' in Eq. {21 }. The bound- 
ary in k space which separates the propagating plane-wave 
region from the evanescent wave region is the "radiation 
circle," defined by k 2 + k 2 = k 2 

The situation described above is illustrated in Fig. 1. In 
this figure the "FT" dashed lines represent the two-dimen- 
sional forward Fourier transform going from an {x, y} plane 
in real space to the {kx,k• } plane in k space, the "IFT" dashed 
lines represent the inverse Fourier transform, and 

k•x/Ik 2 - k } - k•l. Features of the source in the Zs 
plane which vary in space more slowly than 2 get mapped by 
the FT to points in k space lying inside the radiation circle; 
features of the source which vary in space more rapidly than 
2 get mapped to points in k space lying outside the radiation 
circle. The wave field in a plane a distance z above the Zs 
plane is determined in k space by multiplying the amplitudes 

2rrc (x, y) - FT ---- (kx, ky) k = - (kx2 + WAVELENGTH •- o z 

FIG. 1. Schematic representation of 
the holographic reconstruction pro- 
cess, illustrating propagating and 
evanescent waves. 
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•kx, yy, Zs) inside the radiation circle by exp(ikzz ) (thus sur- 
face waves varying more slowly than )t simply undergo a 
phase change in moving to a plane away from the sources), 
and by multiplying the amplitudes outside the radiation cir- 
cle by exp( - kzz)(so that surface waves varying more rapid- 
ly than)t suffer an exponential decay in amplitude in moving 
to a plane away from the sources). 

Having discussed the role of the propagator G' [Eq. (21)] 
in radiation from the Zs plane [F.q. (18)], we now consider its 
action in the expression for holograp,.hic reconstruction, 
Eq. (20). By inserting the expression for G' [Eq. (21)] into Eq. 
(20) we obtain 

y, z) 

(• { = •---1 (kx,kx,ZH} [e k 2 2•<k2 • x+ky 
ß 

k 2 2 >k2,] •+k• 
{22} 

When z> ZH, then Eq. (22)is analogous to Eq. (18), and it 
represents the phase change of the propagating plane-wave 
components and the exponential decay of the evanescent 
wave components in going from the ZH plane outward {away 
from the sources) to the z plane. When z < ZH, then the factor 
exp [ ik• (zn - z) ] reverses the phase change of the propagat- 
ing plane waves, and the positive exponential 
exp [ + k z (z n -- z) ] restores the decayed evanescent wave 
amplitudes to their original values in the z plane. 

It should be noted that z s does not appear in Eq. {22), 
nor will it occur explicitly in any final reconstruction expres- 
sions. The role of the surface $ in the derivation of general- 
ized holography is only to establish rigorously the region of 
validity of the final expressions. In real applications of gener- 
alized holography, the z s surface is the one parallel to the ZH 
surface which just touches the physical sources or scattering 
objects. 

If we redefine k: to be a complex function of kx and 
k•, as 

k2._k2_k 2 i x y • 
kz= i4 k•- 2--k2 •, + k•, , 

k 2 2 2 • + k•<k , 
k 2 2 2 •, + k•, >k , 

then Eq. (22) becomes, with •--1 explicitly expressed, 

•{x, y, z) = 1 f f . _ (2rr)2 [ 3(k•"ky ' zn }e ikzzH ] 
X e il• + • + •::l dk• dk• . 

Equation {24} is of the form 

,p(x, y, z) 

_ 1 ff_ ,eil•,•,, •,•, --(2rr)• .• (k•,k• + ky• + dk• dky , 

(23) 

(24) 

(25) 

which is the general solution of the Helmholtz equation (6) 
which one would obtain using the method of separation of 
variables in Cartesian coordinates. The two constants ofsep- 

: the mode labels are k• and k• and the aration are k 2 and k y x 9 9 

product solutions (eigenfunctions) are the propagating plane 
waves and the evanescent waves: 

x, y, z) 

{eik•Xeikyy ei:4k2-•}-kJ k 2 2<k2 = , •+ky , 
2 

ei•Xei•.v e - ,d • } + k • - • 2 k 2 + k • 2 >k 2 
(26) 

The reconstruction expressions of generalized holography 
may be derived quickly from general solutions such as Eq. 
(25). One simply evaluates the general solution at the holo- 
gram coordinate, z -- ZH, and then uses the orthogonality of 
the product solutions to uniquely solve for the coefficients 
A (kx k• ) in terms of the holegram data •b(x, y, ZH ). The result 
is an expression of the form of Eq. (24}. This separation of 
variable and eigenfunction technique will be used to derive 
the expressions .of generalized holography for coordinate 
systems other than Cartesian; in non-Cartesian coordinate 
systems the Green's function is known only in terms of an 
eigenfunction expansion so that no convolution expressions 
analogous to Eq. (15} are available, and only expressions 
analogous to Eq. (25} can be used. For the derivation of the 
expressions of plane generalized holography [Eqs. (18}-(22}], 
it would have been easier to use separation of variables in 
Cartesian coordinates and expansions in terms of the eigen- 
functions of Eq. (26}; however, the use of the real-space 
Green's function G'(x- x', y--y', z- Zs} [Eq. (14}] in the 
convolution expression (15} will be necessary in dealing with 
the problem of a finite holegram aperture in real applications 
of plane generalized holography. 

At this point the wavelength resolution limit of conven- 
tional holography should be discussed. The "resolution" of a 
field refers to how rapidly the field varies in space. It may be 
quantitatively measured by Fourier transforming the field in 
some direction (for example, the x direction)and then exam- 
ining the amplitudes for the different "spatial frequencies" 
k•. If in any direction there are no amplitudes larger than 
some predefined cutoff value for spatial frequencies beyond 
some value kmax, then the minimum distance over which the 
field varies in space, or the resolution distance, is 
R • rr/kn•. In generalized holography the resolution is de- 

termined by the values of k• and k• for which •b(k•,k•, Zs} 
has a significant magnitude. As already discussed, if there 
are no limits on the nature of the sources, then •b(k•,k•, Zs} 
may have finite amplitudes for arbitrarily large values of kx 
and ky. In the reconstruction expressions of generalized ho- 
lography [e.g., Eq. (24}] the integrals in k space extend over 
the infinite domain, so that generalized holography has no 
intrinsic resolution limit; as already stated the reconstruc- 
tion expressions of generalized holography are exact. The 
actual resolution limits of practical generalized holography 
will be discussed in Sec. IV; however the resolution limit of 
conventional holography may be obtained immediately. In 
typical conventional holography, holograms are recorded at 
a distance d in the Fraunhofer or Fresnel zone of the sources 

(many wavelengths away from the sources, d•)t ) so that the 
h•ologram represents the Fourier transform of the sources 
•(kx/d, ky/d, z s)•-. That is, the forward Fourier transform of 
generalized holography is performed by the field propaga- 
tion itself. However, what is wrong here (and ignored in most 
textbooks on holography) is that this procedure does not 
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work for the evanescent wave components. The reasons that 
the evanescent waves are ignored is because they decay {by 
the factor exp [ ikz {z - Zs ) ] } to an unmeasurable level in the 
Fraunhofer or Fresnel zone. Taking 2•r/A as a typical 
value for kz, and taking 22 for {z-z s), we have 
exp[ - (2•r/A)(2A )] = exp( - 4•r)• 10 -6, SO that the 
evanescent waves may decay by six orders of magnitude 
within only two wavelengths from the source. On the other 
hand, the propagating wave components maintain their am- 
plitudes and only change phase in traveling to the farfield 
(thus phase is more important in conventional holography}. 
In conventional holography {optical an• acoustical} only 
the propagating wave components [90(k•,k•,zs} with 

2<k2 k 2 + k • ] are measured, and only these are used in the 
reconstruction. 2-• With only these components the maxi- 
mum spatial frequency is kma x • k • 27T/X, and the resolu- 
tion distance is R • A ?km• • A/2; thus the resolution of 
conventional holography is limited by the wavelength of the 
radiation. If better resolution is to be obtained in generalized 
holography, then the evanescent wave components must be 
measured; furthermore, the reconstruction expressions {in- 
cluding the Fourier transforms} must be evaluated numeri- 
cally, since there are no techniques in Fourier optics which 
can reconstruct the evanescent wave components. 

E. Calculation of other quantities 

1. Field gradient (particle velocity field) ' 

Once the three-dimensional wave field •(x, y,z)has 
been determined, other quantities such as the field gradient 
V• can be determined. In acoustics, where • is the sound 
pressure field, the particle velocity field can be calculated 
from 

V(r) = V•b(r)/i!•ck, (27) 
where /• is the fluid mass density. By taking the gradient 
operator inside the integral in Eq. (24), the expressions for 
the three particle velocity components Vn r/= x, y, z, be- 
come 

•'.(x,y,z)= l ff © 4•• •(k•,kx, 
X [(kn/k )e '•'<z-z"] e i(A•x + k,y)dk x dky. 

(28) 

It is important to remember that in expressions such as (24} 
and {28}, kz is a complex function of k• and ky. 

At this point it is wo•h considering solving Eq. (28} for 
•(k•,ky, z• } in te•s of Vz (x, y, Zs } and using this in Eq. {24}. 
The result is 

•(x, y, z) = gc 

X e 'lk•; + k,y) dk; dky, (29) 
which is the same result which would be obtained if the origi- 
nal problem had been specified with Neuman instead of Dir- 
ichlet boundary conditions. [This is the expression which 
would be used to predict the radiation from a planar vibra- 
tor; the surface velocity Vz(x, y, Zs) might be determined 

from a structural analysis program.] The important thing to 
notice here is the appearance of kz [written out as 

• • in Eq. (29)] in the denominator of the ker- 4k2--k 2 --ky 
nel {the term in brackets}; on the radiation circle 

2 = k 2} the kernel is singular. This singular behav- (k 2 q- k• 
ior must be kept in mind when one attempts to evaluate Eq. 
{29) using conventional computer techniques; this will be dis- 
cussed further in Sec. IV. 

As already mentioned, finite-aperture effects may be 
more readily handled if one uses real-space convolution ex- 
pressions rather than the Fourier transform expressions 
such as Eq. {29). If the convolution theorem is applied to Eq. 
{29) and the kernel is transformed analytically, then one ob- 
tains 

•b(x, y, z) 

_l f i/.tck Pz(X,,y,,zs} 4rr oo 

X(2 exp [ ik •(x -- x')2 q- ( Y -- Y')2 q- (Z -- Zs)2 ] ) x/(x -- x') 2 + ( y -- y,)2 + (z -- Zs)2 
X dx' dy'. (30) 

Equation (30) is the real-space convolution expression for the 
solution to the Neuman boundary value problem, i.e., Eq. 
(12) in Cartesian coordinates; the term in large parentheses is 
the Green's function evaluated at z s, and i/ack v•(x', y', Zs) 
= &p/Oz on Zs. 

2. Farfield diroctivity pattern 

A farfield directivity pattern can be determined if the 
Cartesian coordinates are written in terms of spherical co- 
ordinates r, 0, •b, defined by 

x = r sin 0 cos •b, (3 la) 

y = r sin 0 sin •b, (3 lb) 

z = Zs = r cos 0. (3 lc) 

A complex directivity function D (0,•b) may be defined by 

½(r sin 0 cos •b, r sin 0 sin •b, r cos 0) 

--• D (O,qb)exp(ikr)/r . (32) 

If expression (30) is used for •p with the large r approximation 

x/(x -- x') 2 + (y -- y,)2 + (z -- Zs)2 
• r -- x' sin 0 cos •b --y' sin 0 sin •b, (33) 

then one obtains 

D (O,qb) = ilack Vz(k sin O cos qb, k sin O sin qb, Zs) . (34) 

Using Vz from the Fourier transform of Eq. (28)(withz = Zs) 
yields 

D (0,4) = k cos 0•b(k sin 0 cos •b, k sin 0 sin •b, zn) 

X ie - •k •o• o( z.- z•) ( 35) ß 

Thus the farfield directivity pattern can be found from the 
Fourier transform of the hologram data. Usually the phase 
factor is ignored. It is important to note that since 
(k sin 0 cos •b) 2 -[- (k sin 0 sin •b) 2 = (k cos 0 )2•<k 2, then the 
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farfiel• directivity pattern depends only on those compo- 
nents •b(kx,ky, zn} which lie inside the radiation circle. 

3. Second-order quant/t/es (acoustic vector intensity field, 
to ta l p o we r ra d/a ted) 

From the three-dimensional field •b and its gradient 
second-order products may be determined. A particularly 
important example is the acoustic vector intensity field, de- 
fined by 

1 f•i ø+r S(r} = -• •b(r,t }V{r,t}dt, (36} 
where •b and V are the sound pressure and particle velocity 
fields, and Tis a suitable time scale 13 for noise sources or the 
period for harmonic sources. With the assumption required 
to make Eq. {5} an equality (i.e., harmonic sources}, then Eq. 
(36} becomes a sum of independent frequency terms, each 
contributing to the intensity field an amount 

S(r) = « Re[•(r)V*(r)]. (37) 
This can be calculated from the hologram data using Eqs. 
(24} and (28}. 

By integrating the normal component of the intensity 
field over a suitable surface, the total power radiated may be 
obtained. For plane holography, the total power radiated 

I 

into the half-space away from the source plane is 

P •-- Re •b(x, y, z)V•*(x, y, z) dx dy, (38) 
2 • 

for any Z>Zs. For some sources it may be known that •b or V• 
vanishes except over some finite region, so that Eq. (38) may 
be evaluated numerically. In any case, Eq. (38) may be re- 
written using the identity 

y, y, z)ax ay 

so that 

(39) 

From Eq. (24)we have 

and from Eq. (28)we have 

•z(kx,k,, z)- (1//ac)•(k•,k,, 2H)(kz/k ) e ik'(z-z") . 
Keeping in mind that kz = x/k 2 
function, we have 

(40) 

(41) 

(42) 

-- k 2 _ k 2 is a complex x y 

k 2 + k2x<k 2 x .}' • 

k •- •_ •_ {43) ,, + ky >k . 

Now 

1 

•, :•)/k 2 dkx dk•, (44) Xx/1 -(k •- + k• . 
Like the farfield directivity pattern, the total power radiated 

depends only on the components g,(k•,,k.vz,) which lie inside 
the radiation circle. When Eqs. (35)and (44) are evaluated 
numerically using actual hologram data, care must be taken 
to insure that there is a sufficient density of data points inside 
the radiation circle. This will be discussed further in Sec. IV. 

F. Cylindrical holography 

As demonstrated by Eqs. (24) and (25), the expressions 
of generalized holography may be found by using separation 
of variables to find the general solution to the Helmholtz 
equation (6} and then using the hologram data and the ortho- 
gonality of the eigenfunctions to find the unique solution. In 
cylindrical coordinates (p,4, z} the general solution (for 
sources contained just inside the surface S given by p = Ps 
and radiating outward} is 

•( p, •, Z) = E 2m (kz)eim•eikZHm (kp p) dkz , (45) 
m= --oo 

where m is an integer, a• m (kz) are the eigenfunction ampli- 
tudes to be determined from the hologram data, 

kp = x/k: - k • is a complex quantity analogous to k, in Eq. 
(23}, and Hm (kp p} is the Hankel function (when k, <k} or 

Imodified Hankel function (when k• > k) behaving asymp- 
totically as exp(ix/k 2 - k • p} or exp( - x/k • - k 2 p}. The 
modified Hankel function solutions are analogous to the 
evanescent wave components of the Cartesian coordinate ei- 
genfunctions. 

The eigenfunction amplitudes A m (kz} in Eq. (45)can be 
found from hologram data measured on the surface p = p,, 
where pn >Ps. The orthogonality of the eigenfunctions is 
such that 

dz dq• ( eim•e ik• ) (eim'•e ik •z), 

= 4•mm , •(k z -- k •). (46) 

Evaluating Eq. (45) at p = pa and using Eq. (46) to solve for 
A m (k z ) yields 

•m (kz } = {1/2•)•m {kz, fiH )/HM(k• fill}, (47) 
where 

•m(kz,pn) 

- • dz d• •( Pu,•, z)e - im•eik• (48) 
2• -• 

Substituting Am (kz)in Eq. (45)yields 

•(p,•,z)= 1 • f_' - ß 2• m • •m (kz, PH ) eim•e'k• 
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which is the analog of Eq. (24). Again it should be kept in 

mind that k• = x/k 2 _ k •2 is a complex function ofk•. Other 
quantities, such as the field gradient, etc., may be calculated 
from •b(p,•, z) as for the Cartesian coordinate solution. The 
solution (49) is valid for P•Ps, where p = Ps is the smallest 
cylindrical surface which just touches the physical sources 
or scattering surfaces. 

G. Spherical holography 

In spherical coordinates (r,O,q•), the general solution (for 
sources contained within a spherical surface S defined by 
r = rs and radiating outward)is 

•b(r,O,q•) = • • .•lm Ylm(O,q•)hl(kr) , 
l=Om= --1 

where I and rn are integers, the ¾lm{O,q•) are the spherical 
harmonics, and hl(kr) is the spherical Bessel function behav- 
ing asymptotically as exp{ikr). It is interesting to note that 
there are no exponentially decaying functions in this solu- 
tion. The eigenfunction amplitudes Alm can be determined 
from hologram data on a spherical surface r = rn, with 
rn > rs, by using the orthonormalization of the spherical 
harmonics. One obtains 

/• lm = •lm (I'H )/hl(kI'H ) , (51) 
where 

•lm(l'i.l)-- = sin 0 dO dq• •b(rn,O,q•)Y?m(O,q•) . (52) 

Substituting •lm into Eq. (48)yields 

•(r,O,q•) = •lm(rN)Ylm(O,q•) , (53) 
1= m=--I 

which is the analog of Eqs. (24) and (49). 

IV. ACTUAL IMPLEMENTATION 

A. General 

The implementation of generalized holography in an ac- 
tual system involves acquisition of the hologram data and 
evaluation of the various expressions of generalized hologra- 
phy. Because the features of the {hardware) system used for 
actual data acquisition depend on many extraneous design 
variables, few general comments may be made about data 
acquisition. On the other hand, a number of interesting gen- 
eral comments can be made concerning the numerical eval- 
uation of the holography expressions. The following para- 
graphs discuss the general features, problems, limitations, 
etc. associated with the actual implementation of general- 
ized holography. In these paragraphs it should be assumed 
that the comments are about plane holography in particular 
but may be generalized to other coordinate systems unless 
otherwise stated. The aspects of a particular hardware sys- 
tem {used for data acquisition and processing) will be de- 
scribed in Sec. V. 

B. Data acquisition 

Concerning data acquisition, it can be assumed that the 
major temporal frequency components are sampled at the 
Nyquist rate or faster, and that any other components at 

higher frequencies are filtered to a sufficiently small "noise" 
level. The time-sampled data may then be analyzed to pro- 
duce the temporal frequency complex amplitudes •{rn), as 
discussed in Sec. III A. In theory, the hologram data must be 
known as a continuous function (i.e., known at all points rn) 
over the hologram surface H which may be infinite in extent 
{spherical holography being one exception). In practice, the 
hologram data can only be sampled at discrete points on a 
surface of finite extent {referred to as the hologram aperture). 
As far as the discrete_sampling is concerned, one must be 
certain that the field •rn) is being sampled at the spatial 
Nyquist rate. It should be recalled that any spatial frequen- 
cies of the source which exceed those of the characteristic 

radiated wavelengths exponentially decay with distance 
from the source. Thus spatial sampling is provided with a 
natural filter; as an empirical rule-of-thumb, we find that if 
the hologram sampling is done at a distance d from the 
source, then the distance between sampling points should be 
no larger than d {see Sec. V). Discrete spatial sampling does 
not result in any unusual problems in generalized hologra- 
phy. On the other hand, the finite hologram aperture does 
result in fundamental problems which require special pro- 
cessing techniques. Of course, the holography expressions 
which involve integrals over infinite domains in space {as in 
plane and cylindrical holography) necessitate that some as- 
sumption be made about the hologram {or source) data 
which lie outside the finite hologram aperture. Practical 
limitations notwithstanding, it can be assumed that the holo- 
gram aperture may be made sufficiently larger than the 
sources {of finite extent) so that the field on the surface be- 
yond the aperture is not significantly different from zero. 
This is a reasonable assumption for laboratory studies, but 
other techniques may be required for field measurements, as 
discussed in Sec. VI. The special processing required even 
when the field is zero outside the aperture is discussed in Sec. 
IV D below. 

In addition to being finite and discrete, the actual mea- 
sured hologram data will contain some intrinsic error in- 
clud. ing background sound, electronic noise, calibration er- 
rors, etc. The error level may be characterized by a dynamic 
range D defined by 

D = 20 log,o(M/E), (54) 

where M is the maximum field amplitude which is measured 
and E is the amplitude of the error. It is interesting that this 
dynamic range plays a role in determining the spatial resolu- 
tion of generalized holography, as discussed in the next sub- 
section. 

C. Resolution 

A discussion of the resolution of the reconstructed fields 

of generalized {plane) and conventional holography was pre- 
sented in Sec. III D. The minimum resolvable distance is on 

the order of R • rr/kmax, where kma x is the highest spatial 

frequency for a measurable Fourier component •b{kx,ky, zn). 
In conventional optical and acoustical holography no 
evanescent waves are used in the field reconstructions so that 

kma• = k and R = A/2. In actual implementations of gener- 
alized holography, the hologram is uniformly sampled at 
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discrete points in space; from the Nyquist theorem 
kma x • 7r/a, where a is the distance between the spatial sam- 
pling points, so that R •a. The sampling lattice constant a is 
only a lower limit for R because kma x may be further limited 
by the ability of the hologram recording medium to measure 
all of the necessary evanescent wave components, as dis- 
cussed below. 

In order for generalized holography to surpass conven- 
tional holography in resolution, it is necessary to measure 
some evanescent wave components so that kma x will exceed 
k. The evanescent wave components decay rapidly with dis- 
tance from the source, and some of the components, in tra- 
versing the distance from the source to the hologram, will 
decay to a level below the error level E of the hologram 
recording system. These evanescent wave components can- 
not be used in the reconstruction, and this sets a limit on 
kma x . In order to quantify this, we assume that the source, at 
Zs, has propagating and evanescent wave components with 

equal amplitudes; that is A = [typical I•(k•,ky, zs)l] is the 
2 2 

same for some k •- + k •- <k 2 as for some k• + k y > k x y ' 

Since the propagating wave components maintain their am- 
plitude in traveling to the hologram plane, then,4 <M, where 
M is defined above in Sec. IV B. On the other hand, the 
evanescent wave components in the hologram plane ZH > Zs 

x 2 _k 2 will have amplitudesA exp [ - x/k2 + k • {ZH -- Zs) ] . 
In order for these to be used in the reconstruction the ampli- 
tude must be above the error level E: 

exp[ - x//c 
Using Eq. {54} defining the dynamic range D of the hologram 
recording system and the relation ,4 <M, we obtain 

{k} + k})<k 2 +[Dln 10/20½. --Zs)] 2 . 156) 
The expression on the fight-hand side of the inequality {56} is 

2} and hence is the upper limit of usable values of {k 2 + k y x 

k: The minimum resolvable distance R = rr/km•. is now maJ[ ø 

R = {4/A 2 + [DIn 10/20rr{z.--ZS}]2} --1/2 ß {57) 
Since the dynamic range term is usually much larger than 
4/A 2, we have 

R =20•z n -- Zs)/D In 10. (58) 

Thus, in actual implementation of generalized holography, 
good resolution is obtained by having a precise recording 
system {large dynamic range D ) and by measuring as close to 
the sources as possible (small zn -- Zs ). Measuring close to 
the sources is no problem in generalized holography since no 
use is made of Fourier optics and there is no requirement for 
recording in the Fraunhofer or Fresnel zone. 

D. Finite aperture effects: Wraparound error 

As already mentioned, practical data acquisition results 
in the hologram being finite in size and discretely sampled. 
The processing of the hologram field must also be finite and 
discrete in nature; that is, even if the hologram data could be 
assigned some assumed a priori values outside the data ac- 
quisition range, the time and space limitations of the data 
processing hardware would still restrict the hologram field 
to be finite in size. This finite aperture restriction leads to 

interesting effects, in particular an error referred to as wrap- 
around, 19 which fortunately can be controlled with proper 
processing techniques. The wraparound error and the tech- 
niques used to avoid it are discussed in this section. 

To emphasize that the wraparound error results from 
improper data processing rather than insufficient data ac- 
quisition, we shall assume that the actual field in the holo- 
gram plane is negligible for points (x, y) outside the square 
region defined by x= ñL/2 and y= ñL/2. Thus 
•x, y, ZH) for (x, y) within the finite L X L aperture accur- 
ately represents the full hologram plane. 

The expressions of plane and cylindrical holography in- 
volve Fourier transforms which are of course numerically 
evaluated with finite Fourier transforms and with the FFT 

computer algorithm in particular. The field •{x, y, ZH) inside 
the L X L hologram aperture is represented by the discrete 
series: 

•L (X, y, Z H ) • Z Z •m,n (ZH ) ei(a'r/r IImx + ny) 
m=0n=0 

(59) 

where •m,n(ZH)is proportional to •b(k•,,ky, zn) with 
k•, = (m - N/2}rf/L, ky = (n - N/2}rf/L, and N is an in- 
teger limited by reasonable computation times. This series 
evaluates to •b(x, y, zn} exactly at a set of points inside the 
L X L aperture, but outside the aperture it represents not 
the actual {negligibly small} hologram field but rather the 
periodic extension of the field inside the aperture. This peri- 
odic extension is illustrated in Fig. 2{a}; the small center 
square represents the L X L aperture and the localized holo- 
gram field within it, and the set of nine duplicate squares 
represents a portion of the infinite periodic extension. This 
extended field looks like a field generated by the actual 
source and an infinite number of image sources. 

Equation (16} shows that propagation of the field away 
from a plane involves the convolution of the Green's func- 
tion with the field in that plane. The Green's function, of 
approximate form exp(ikR }/R [illustrated in Fig. 2(b}], has 
infinite extent [indicated by the arrows in Fig. 2{b}]. If this is 
convolved with the periodic extension of the field [Fig. 2(a}], 
then contributions from the images outside the L X L aper- 
ture will leak, or "wraparound," into the reconstructed field 
inside the aperture. That is, the Green's function propagates 
the field from not only the original source, but from all the 
image sources as well. If one is reconstructing the field in a 
plane close to the hologram plane (I z - zn I ), then there is 

FIG. 2. The wraparound problem. (a) Periodic repetition of the source 
caused by its r•presentation by a discrete Fourier series; (b) the Green's 
function to be convolved with the source; (c) the source with a guard band of 
zeros; (d) the truncated Green's function. 
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negligible error. However, when (z -- zn)•L, then consider- 
able wraparound error may result. 

How the wraparound error may be eliminated is illus- 
trated in Fig. 2(c) and (d). The first step, shown in Fig. 2(c), is 
to surround the L X L aperture with a "guard band" of ze- 
ros, forming a 2L X 2L aperture. The discrete series repre- 
senting this field is 

2N 2N • 

•2œ(x'Y'•H)• E E •m,n(•H)•i•r/œ(mx+nY•' (60) 
rn•0 n--O 

which has images as •bL has, but they are farther apart. How- 
ever, pushing the images farther away does little to solve the 
wraparound problem because there are an infinite number of 
images, and they may constructively interfere inside the re- 
construction aperture. What solves the problem is the use of 
truncated Green's function defined by 

G•(x. y. z) 

= 
tO, 

if --LExEL and --L 
otherwise, 

(61) 

which is illustrated in Fig. 2(d). For points (x, y) inside the 
original L X L aperture one has 

•(x. y. z.)G '(x - x'. y - y'. z - z.) dx' dy' 

= (x'. y'. z.)G(x - x'. y - y'. z - z.) 
L 

Xdx' dy' . (62) 

With -- L/2ExEL/2 and -- L/2•yEL/2, then the trun- 
cated Green's function Gr ignores the images of •2L. Thus 
calculating the finite convolution on the rig_ht-hand side of 
Eq. (62), which involves the discrete series •2c, yields exact 
reconstructions, with no wraparound error, so long as one 
only reconstructs inside the "duct" enclosing the original 
L X L hologram. 

In performing actual calculations, the convolution on 
the right-hand side of Eq. (62) is put into discrete form and 
evaluated using forward and inverse FFTs. Making the con- 
volution integral discrete involves some approximations and 
these introduce small errors in the reconstructions. The ac- 

tual numerical processing of the other quantities which can 
be determined with generalized holography also involves ap- 
proximations and small errors. There are a number of differ- 
ent ways of making these approximations and it is found that 
some procedures result in smaller errors. The development 
of the techniques to minimize the wraparound and other 
errors, and the optimization of their computer algorithms, 
have been accomplished by graduate student W. A. Veron- 
esi 2ø and will be published in a second paper. 

E. Zoom imaging 

As discussed in the previous section, the wraparound 
error can be avoided if the reconstruction volume is confined 

within a duct enclosing the L X L aperture. For reconstruc- 
tions in the nearfield of the sources the size of this area is 

usually more than adequate. However, for reconstructions 
out to the farfield a much larger aperture would be desirable. 

Furthermore, having a larger aperture means that there is a 
higher density of discrete points in k space (the distance 
between points in k space is •r/L ), and this may be necessary 
for calculating quantities such as the farfield directivity and 
the total power radiated. It should be recalled that these 

quantities involved •b(kx,ky, zn) at points only inside the ra- 
diation circle. For low-frequency sources, the hologram ap- 
erture may be only a few wavelengths in size, and this means 
that there may be only a few discrete (kx,ky) points inside the 
radiation circle, as illustrated in Fig. 3(a); such a low density 
of points inside the radiation circle may be inadequate for 
calculating the directivity pattern and the total power radiat- 
ed. 

In order to increase the aperture size one could increase 
the size of the guard band of zeros, making the effective aper- 
ture size KL X KL. Equivalently, one could convolve 

•k,,,ky, zn) in k space with a sin a/a type function TM in or- 
der to intersperse discrete points in k space. Unfortunately, 
the first technique would require a two-dimensional FFT on 
a very large data set, and the second would require multipli- 
cation by an even larger matrix; both would necessitate pro- 
hibitively long computation times. 

However, it should be noted that the calculations which 

require a larger aperture (or higher density of points in k 
space) only require a higher density of k-space points inside 
the radiation circle (since reconstructions beyond a few 
wavelengths contain virtually no evanescent waves). It is 
possible to reformulate the k-space convolution technique so 
that it only intersperses data points within the radiation cir- 
cle, as shown in Fig. 3(b). In a reasonable amount of compu- 
tation time all of the original N 2 k-space points [as in Fig. 
3(a)] may be relocated inside the radiation circle [as in Fig. 
3(b)]. With this high density of k-space points, a much larger 
aperture may be obtained beyond the nearfield. The proce- 
dure for enlarging the aperture size is referred to as zoom 

FIG. 3. Zoom imaging. (a) The finite hologram aperture may result in only a 
few data points falling within the radiation circle. (b) For calculation of far- 
field quantities, a higher density of data points may be mapped into the 
radiation circle. 
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imaging2•; a paper describing the computer algorithm for 
this process is in preparation. 

lindrical geometries have been explored by Stephanishen 
and Chen. 23 

V. EXAMPLE OF IMPLEMENTATION: NEARFIELD 
ACOUSTIC HOLOGRAPHY 

A. Introduction 

We shall describe in this section a sound radiation mea- 

surement system, called nearfield acoustic holography 
(NAH), which is developed from the principles of general- 
ized holography. At The Pennsylvania State University two 
NAH systems, one for airborne and the other for underwater 
sound, are being used for a wide variety of research studies. 
Several other NAH systems are being, or have been, built at 
other laboratories by graduate degree candidates trained at 
Penn State: Earl Williams has developed an underwater sys- 
tem at the Naval Research Laboratories in Washington, DC; 
Bill Strong is constructing an airborne system at Steinway 
Piano; and Toshi Mitzutani is developing a facility at the 
Technics Division of Matsushita, Inc., in Japan. Though 
each system has its own data acquisition features and inno- 
vations, all share the common feature of digital reconstruc- 
tion based on the principles of generalized holography. Gen- 
eralized holography in spherical coordinates is used in 
another system developed independently by G. A. Wein- 
reich •: at the University of Michigan, Ann Arbor. FFT 
methods for modeling sound radiation in Cartesian and cy- 

B. The NAH system for airborne sound 

A large two-dimensional open array of microphones is 
employed in the Penn State NAH system for airborne sound. 
An early system, developed with the assistance of research 
associate E.G. Williams and graduate students W. Y. 
Strong, T. B. Beyer, and D. J. Bowen, utilized data acquisi- 
tion electronics which were capable of only single frequency 
sound radiation measurements and had slow and relatively 
inefficient data processing algorithms. Recently, the entire 
data acquisition and processing system has been totally re- 
built. •4 Now real-time measurements on wideband noise 

sources can be performed. With the present system, one may 
study the effects of noise source temporal and spatial coher- 
ence on such parameters as the acoustic vector intensity field 
(energy flow patterns). Applications of this work would be 
found in panel design, radiation cancellation, etc. 

A schematic representation of the NAH airborne sound 
system is shown in Fig. 4. The microphone array is con- 
structed with a square aluminum I-beam frame on which is 
attached a 16 X 16 latticework of 0.8-mm-steel wires. The 

microphones are located at the intersection of the wires, re- 
sulting in a total of 256 transducers. Since the microphone 
size (about 1 cm} is much smaller than the typical 1-m wave- 
lengths studied, and since they are positioned with a unit to 

FIG. 4. The Penn State nearfield acoustic holography system for airborne sound radiation research. Illustrated are the 256-microphone array, the data 
acquisition electronics, and the data processing and display equipment. 
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unit spacing of 0.18 m, a suitable open (transparent} array is 
formed. In order for the evanescent wave components to be 
measured, the sound source to be studied is positioned just a 
few centimeters below the microphones, so that the array is 
in the extreme nearfield of the source. Typical sources have 
dimensions on the order of 1 m, so that the 3-m array, at a 
distance of about 2 cm, subtends a very large solid angle 
(nearly 2•r sr}. Consequently source directivity and total 
power radiated into the half-space above the source can be 
properly measured. 

Signals from the microphones are switched through a 
multiplexer to a 4-MHz analog-to-digital converter. Digi- 
tized data, consisting of 256 time sequences recorded simul- 
taneously at the 256 microphone sites, are stored in a high- 
speed buffer memory. At the completion of data taking 
(which takes but a fraction of a second} the contents of the 
buffer memory are transferred through an on-line minicom- 
puter to an attached array processor. At this point a tempo- 
ral FFT is performed on each of the time sequences. This 
yields a two-dimensional {over the hologram plane} complex 
data set for each of the temporal frequencies. The 2-D spatial 
data sets are each processed as described in the theory sec- 
tions. The array processor speeds along the process by reduc- 
ing the time required for 2-D complex FFTs, as well as calcu- 
lations of the Green's functions, window functions, and 
three-dimensional graphics hidden-line plots. A vector 
graphics system {having a higher resolution and drawing 
rate than an conventional rasterscan system} receives the 
graphics output. The graphics system is capable of redraw- 
ing hidden-line plots every 1/60 of a second, permitting mo- 
tion-picture studies of the holographic reconstructions. 
These motion pictures allow an experimenter to examine {in 
slow motion and with greatly exaggerated displacements} 
subtle aspects of the calculated results as they evolve in time. 
This feature is especially useful for examining the motion of 
a vibrating structure and correlating this motion with fea- 
tures of the holographically reconstructed radiated sound 
field. 24 

The density of the data points can be greatly increased 
for most sound sources by spatially interspersing measure- 
ments. This means that after recording one set of data, the 
entire microphone array is translated 1/8 of the distance 
between the microphones, at which point data are again re- 
corded. This process repeats in an 8 X 8 pattern (within the 
square areas between the microphones} until a 128X 128 
data set with sample points every 2.2 cm is obtained. The on- 
line minicomputer controls the entire translation process us- 
ing the system of servo motors illustrated in Fig. 4, a system 
developed by graduate student Toshi Mitzutani. 

In order to permit data acquisition and data processing 
to be carded out in parallel, the timing of the signal multi- 
plexing and digitizing is controlled by separate electronics 
rather than by the on-line minicomputer, as depicted in Fig. 
4. 

The signals from the microphones must be digitized si- 
multaneously (on the acoustic time scale of •0.3 ms) in or- 
der to record a hologram for a wideband noise source. In- 
stalling 256 separate cables connected with 256 
analog-to-digital (A/D)convertors would be both cumber- 

some and impractical. Instead, a multiplexing system is used 
in which each microphone unit has its own 60-dB amplifier, 
remotely selectable 20-dB attenuator (to prevent clipping 
with especially loud sources), low-pass filter (to prevent time 
domain aliasing beyond the Nyquist frequency), and an out- 
put multiplexing switch. In the array, there are 16 signal 
lines, with 16 microphones connected in parallel in each line. 
Orthogonally to the signal lines run 16 gate lines, which en- 
able each multiplexing switch on the 16 microphone units on 
that gate line. Thus, when one of the gate lines is activated, 
the signals from the 16 switched microphones along the gate 
line appear on the 16 signal lines, and are ready to be digi- 
tized. Additional multiplexing is required to connect the 16 
signal lines to the four inputs of the analog-to-digital conver- 
tor, as shown in Fig. 4. 

Sampling the entire array in •0.3 ms requires that the 
microphone signals be switched and settle within 1/as. In 
designing such a complex multiplexing system a great deal of 
effort must be expended to prevent switching transients from 
inducing large errors in the microphone signals. Digital and 
analog signals are completely isolated from each other 
whenever possible, and independent grounds are established 
for each. After considerable effort Penn State graduate stu- 
dent Donald Bowen es was able to develop a data acquisition 
system which settled to within the digitizing precision 
(0.1%) within the 1-/as time limit. 

Calibration is another important factor in the micro- 
phone array operation. Microphones must be calibrated to 
have a high relative precision in amplitude and phase since 
when performing reconstructions back towards the radiat- 
ing source, the positive exponential factor of the inverse 
Green's function will magnify any calibration error in the 
hologram data. Using a Bruel and Kjaer 1/4-in. microphone 
coupled to an array microphone within a small airtight bel- 
lows activated chamber, each microphone unit in the array 
was calibrated in situ, using the actual data recording paths. 
During data acquisition, calibration data are used to normal- 
ize each hologram data set so that at each of the 256 data 
sites it appears as though the signals were recorded with 
identical Bruel and Kjaer microphones. The careful calibra- 
tion, and the testing of the calibration using a theoretically 
tractable {a rigid oscillating piston} source, were the thesis 
project of graduate student Todd Beyer. 26 

With the system described above, consisting of the high- 
speed data acquisition electronics and computer controlled 
array translation system, it takes but a few minutes for the 
Penn State NAH system to record, transform (from the time 
domain to the frequency domain}, calibrate, and store a 
64 X 64 point hologram. The speed and precision of the data 
acquisition are matched by fast and efficient computer pro- 
grams developed for the digital holographic reconstructions. 
Graduate student Bill Veronesi 2ø explored all the possible 
methods of sampling the Green's functions, and determined 
which methods were most suitable on a case by case basis. 
Research associate Yongchun Lee •7 wrote the computer 
programs which utilize the array processor to its maximum 
potential in all phases of the computations. 

Detailed papers covering all the features of the NAH 
system discussed above (array construction, data acquisi- 
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(b) 

FIG. 5. Holographic reconstruction of the intensity of two point sources. (a) 
Nearfield holography; (b) conventional holography. 

tion, array calibration and testing, and computer algor- 
ithms) will be published in the near future. 

C. Examples of NAH reconstructions 

The reconstruction of two point sources, simulated by 
the low-frequency radiation from the ends of two 2.5-cm- 
diam pipes driven at resonance, is shown in Fig. 5(a). The 
wavelength of the radiation was 3 m, while the spacing 
between the ends of the pipes was only 6 cm. Figure 5(b) 
shows the reconstruction of the two point sources using con- 
ventional holography (without evanescent waves). Notice 
that the reconstruction shows only a single broad maximum, 

roughly a single wavelength (3 m) in diameter. Figure 5(a) 
shows the NAH reconstruction; the two point sources are 
clearly defined. The NAH resolution is improved by a factor 
of • 50. Because the point source is such a simple source, one 
might assume that reconstruction is a simple matter. How- 
ever, if one recalls that the intensity of an ideal point source is 
a product of an infinite pressure amplitude, the velocity am- 
plitude, and the cosine of the 90 ø phase difference (i.e., zero), 
giving a finite result, the results of Fig. 5(a) are indeed 
impressive. It is clear the holegram data must be precisely 
measured, calibrated, and processed in order to so accurate- 
ly process this computationally challenging wave field. 

A plot of a projection of the vector intensity field in a 
plane containing the two point sources and perpendicular to 
the holegram plane is shown in Fig. 6. The acoustic energy 
from the two point sources flows together within a distance 
of only 0.05 wavelengths. 

Figure 7 depicts the reconstructed surface velocity of a 
rectangular plate vibrating in a normal mode which has four 
nodal lines traversing the width of the plate and two nodal 
lines traversing the length. When observing the vector 
graphics display, subtle shifts in phase occurring between 
the various sections of the plate can be readily detected. 
When a plate is vibrating below coincidence, such phase 
shifts will produce dramatic changes in the vector intensity 
pattern above the plate surface. 

In Fig. 8 a top view of the vibrating plate of Fig. 7 is 
shown. Different symbols indicating the surface velocity am- 
plitude and approximate relative phase (cos A• 4-1) 
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FIG. 6. Acoustic intensity vector field from two point sources. 
FIG. 8. Top view of the plate in Fig. 7. The different symbols indicate ap- 
proximate amplitude and phase. 
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FIG. 9. Normal component of the acoustic intensity at the surface of the 
plate of Fig. 7. 

clearly display the (4,2) nodal line pattern. 
Figure 9 plots the normal component of the acoustic 

intensity at the surface of the plate of Figs. 7 and 8. The total 
radiated power is greatly diminished by the presence of re- 
gions of negative intensity which act to cancel the positive 
intensity regions. This is shown more clearly in Fig. 10, 
which gives the projected acoustic intensity in a plane 
through the centerline of the plate and normal to the plane of 
the plate. The positive and negative intensity regions are seen 
to be portions of a circulating energy flow pattern, as dis- 
cussed in Sec. I. The circulating energy flow, which is always 
present for plates vibrating in a normal mode below the coin- 
cidence frequency, occurs within a fraction of a wavelength 
of the vibrating plate surface. 

The holographically reconstructed surface intensity of a 
plate vibrating in a (2,2) mode is shown in Fig. 1 l(b). The 
plate was below coincidence, so regions of positive and nega- 
tive intensity are evident. The theoretically predicted surface 
intensity for the (2,2) mode of a plate (with free edges) vibrat- 
ing in an infinite rigid baffle is shown in Fig. 11 (a). The sur- 
face intensity for the same plate under unbaffled conditions, 
as calculated by an iterative computer algorithm developed 
by E.G. Williams, 28 shows good agreement with the experi- 
mental results of Fig. 11 (b). A comparison of Fig. 11 (c) with 
11 (a) illustrates the significant difference in the surface inten- 
sity between a baffled and unbaffled vibrating plate. 

Figure 12 shows the surface intensity for a different 
plate, also vibrating in the (4,2)mode, but with a much 
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FIG. 11. Surface intensity of a plate vibrating in a (2,2) mode. (a) Theoretical 
unbhffled plate; (b) experimental result from nearfield acoustic holography 
(unbaffled plate); (c) theoretical baffled plate. 

greater thickness than that of the previous plates. The high- 
intensity regions of Fig. 12 are all positive, as is characteristic 
of the higher radiation efficiency of a plate vibrating above 
coincidence, and contrasts sharply with the surface intensity 
shown in Fig. 9. 

Figure 13 displays the intensity field projected onto a 
plane through the centerline of a rib-stiffened vibrating 
plate. A heavy rib is bonded across the width of this plate as 
shown by the edge view of the plate illustrated in Fig. 13. The 
rib is located at 1/4 of the length of the plate. The plate, 
driven at a point in the center, is vibrating at a resonance 
below coincidence. The intensity map shows that acoustic 
energy is transmitted to the air at the driver (due to the dis- 
tortion of the plate by the point force) and near the rib (where 
the bare plate motion is disturbed, and thus promotes radi- 
ation by a reduction in cancellation). A side view of the same 
intensity field is shown in Fig. 14. The end view of the plate, 
projected in the plane containing the rib, shows the rib ex- 

FIG. 10. Projected acoustic intensity in a plane through the centerline of the 
plate of Fig. 7. 
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FIG. 13. Acoustic intensity in a plane through the centerline of a center- 
driven, rib-stiffened plate. 

tending across the length of the plate. At the right-hand side, 
one notices a peculiar circulating energy flow, where a uni- 
form intensity pattern might be expected. This mystery was 
solved upon a close examination of this plate which revealed 
that the epoxy bonding the rib to the plate had come loose 
along the fight-hand section. The circulation flow pattern 
resulting from the faulty epoxy bond was present at all driv- 
ing frequencies. It is important to stress that the spatial reso- 
lution represented in the intensity field plots of Figs. 13 and 
14 is much smaller than the radiated wavelength. Thus, low- 
frequency nondestructive testing is possible, using the NAH 
system to pinpoint defects. 

VI. FURTHER DEVELOPMENTS 

A. General 

Generalized holography can be a powerful measure- 
ment tool when applied to radiation sources or scattering 
objects which conform to the requirements imposed by a 
practical data acquisition system. There are numerous types 
of sources for which the limitations of finite aperture size and 
dynamic range produce negligible error. There are, of 
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FIG. 14. Acoustic intensity in a plane through the rib of the plate of Fig. 13. 
The circulating energy flow pattern locates faulty bonding of the rib. 

course, sources and environments for which the application 
of a generalized holography system is impossible or imprac- 
tical, and other techniques must be used for these sources. 
However, there are some sources which do not conform to 
the ideal conditions of generalized holography, but for 
which the technique may be extended so as to make useful 
measurements possible. Such sources and environments 
may occur when generalized holography is used in the field 
and/or applied to sources or scatters which have a low-sym- 
metry shape, not readily conforming to the level surface of a 
separable coordinate system. These situations and possible 
extensions of the technique will be briefly discussed in the 
next subsections. 

B. Development of a field measurement tool 

With current technologies, a reasonably sized micro- 
phone array and portable data acquisition electronics may 
be constructed and used for field measurements of noise 

sources. Problems which might be encountered in field mea- 
surements include: 

(a) Sources having a physical extent exceedingthe size of 
the array. 

(b) Reverberent environment. 
(c) Sources having low-symmetry shape. 

For sources which extend beyond the hologram aperature, it 
may be possible to make several measurements and combine 
them in a mosaic. Some assumptions must be made concern- 
ing the spatial and temporal coherence of the source. The 
mitigating factor would be that each measurement will be 
made in the extreme nearfield of the local sources, so that the 
direct radiation from these sources will dominate each re- 

constructed field. Once major sources have been quantified, 
this information can be used as a priori knowledge in artifi- 
cially extending the aperture of a single hologram. In gen- 
eral, a priori knowledge of the physical configuration of a 
radiation source may be used to artificially extend the aper- 
ture. Computer simulations of this technique are currently 
in progress. 

Field measurements in a reverberent environment may 
be possible if one has some knowledge of the environmental 
characteristics. For example, if measurements are made on a 
source near a rigid wall, then the hologram data might be 
processed with eigenfunctions cos k=(z- Zwan)rather than 
exp{ikzz). Also a system of images may be used in an iterative 
or variational processing technique in order to find a field 
solution consistent with the hologram measurement and the 
environment. Finally, hologram measurements may be 
made on two closely spaced parallel surfaces, so that the 
processing can distinguish between outgoing waves from the 
source and incoming waves from reflections. This technique 
has already been successfully employed by G. Weinreich. 22 

Although the discussion above may give the impression 
that field measurements with holography are difficult, they 
are no more so than with other techniques. Nearfield holog- 
raphy has the advantage that measurements are made as 
close to the source as possible, so that the direct field of the 
source dominates the data. In this case holography provides 
the fastest, most thorough amount of radiation information 
available per unit effort. 
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C. Holography for low-symmetry objects; depth 
resolution 

As discussed in Sec. III C, generalized holography can 
be used to reconstruct the wave field in a three-dimensional 

region bounded by the level surface $ of a separable coordi- 
nate system, where $just touches the physical source. Ideal- 
ly, one would want the surface of the physical soume to coin- 
cide with the level surface $, so that generalized holography 
can be used to reconstruct the normal velocity and intensity 
directly at the soume; in this ease a detailed correlation 
between the properties of the source and the radiated field 
could be obtained. However, many sources (certainly 
sources encountered in the field) have shapes which do not 
conform to level surfaces and which may have important 
radiating surfaces beyond the level surface $. For example, 
in plane generalized holography one cannot reconstruct an 
"image" of the source beyond the plane (parallel to the holo- 
gram plane) which just touches the physical source region. It 
would of course be advantageous to obtain "depth resolu- 
tion" for holographically reconstructing beyond the surface 
S. 

The reason that generalized holography is restricted to 
level surfaces of separable coordinate systems is because the 
Green's functions (for the boundary value problems) are 
known only for such systems. In order to reconstruct down 
to the surface of an odd-shaped or low-symmetry source, one 
must find the Green's function satisfying a homogeneous 
condition on the soume surface. Since in actual implementa- 
tions of holography the measured and reconstructed fields 
are discrete and finite, then one may use linear analysis to 
determine a Green's function matrix. If finite element tech- 

niques 29 are combined with the principles of generalized ho- 
lography, then the size of the matrices and the time required 
for computations can be significantly reduced. A hybrid ho- 
lography/finite element technique is currently being devel- 
oped by graduate student Bill Veronesi. 3ø An outline of the 
technique follows. 

For sound radiation research (as opposed to acoustic 
imaging) the physical shape of the source is assumed known. 
The surface of the soume S • is divided into a two-dimension- 

al network of finite elements and nodes, as in the convention- 
al technique. Shape functions for both the surface velocity 
v(rs, ) and surface pressure P(rs, ) are then constructed using 
coordinates conforming to the local curvature of the source 
surface. Linear expansions of the surface velocity and pres- 
sure in terms of the shape functions are then inserted into the 
surface Helmholtz integral equation 3•' 

i!•c f fs v(r•' )Gø(rs' - r•' )d 2r• P (rs,) = 2•rk , 

f fs' ago ' 2r' (63) 1 P (r•;,) (rs, -- rs, ) d s, 
2•r , On 

where Go is the free-space Green's function and the prime on 
the second integral indicates the principal value. Evaluating 
the integrals in Eq. (63) over the shape functions produces a 
set of linear equations relating the surface velocity and pres- 
sure expansion coefficients. 

The next step is to use Green's surface integral to find 
the pressure at a field point in terms of the surface velocity 

and pressure•2: 

1 ;rs (i7v(rs')Gø(r--rs') P(r) =-• , 

Oqo (r -- r s, ) d 2r$, ). (64) -- P (rs' ) On 
This expression is evaluated at holegram data points, 
r = r H, and the integrals are evaluated over the shape func- 
tions. Requiting that the resulting expressions for P{rH} 
least-squares fit the holegram data produces another set of 
linear equations for the expansion coefficients. The two sets 
of equations can be solved for the coefficients which then 
give the source surface velocity and pressure. All other quan- 
tities of interest can be calculated from these. 
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